1/1.2 + 1/2,3 + ............+ 1/ x [ x+1] = 2008/2009
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{2008}{2009}\)
\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-...-\dfrac{1}{x+1}=\dfrac{2008}{2009}\)
\(1-\dfrac{1}{x+1}=\dfrac{2008}{2009}\)
\(\dfrac{1}{x+1}=\dfrac{1}{2009}\)
\(x+1=2009\)
\(x=2008\)
\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dots+\dfrac{1}{x\left(x+1\right)}=\dfrac{2008}{2009}\)
\(\Rightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dots+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2008}{2009}\)
\(\Rightarrow1-\dfrac{1}{x+1}=\dfrac{2008}{2009}\)
\(\Rightarrow\dfrac{1}{x+1}=1-\dfrac{2008}{2009}\)
\(\Rightarrow\dfrac{1}{x+1}=\dfrac{1}{2009}\)
\(\Rightarrow x+1=2009\)
\(\Rightarrow x=2009-1\)
\(\Rightarrow x=2008\)
\(\dfrac{3}{7}\cdot\dfrac{5}{4}-\dfrac{5}{7}\cdot\dfrac{1}{3}-\dfrac{1}{7}\cdot\dfrac{5}{12}\)
\(=\dfrac{15}{28}-\dfrac{5}{21}-\dfrac{5}{84}\)
\(=\dfrac{25}{84}-\dfrac{5}{84}\)
\(=\dfrac{5}{21}\)
\(\dfrac{4}{7}x-x=-\dfrac{9}{14}\)
\(\left(\dfrac{4}{7}-1\right)x=-\dfrac{9}{14}\)
\(-\dfrac{3}{7}x=-\dfrac{9}{14}\)
\(x=-\dfrac{9}{14}:\dfrac{-3}{7}\)
\(x=\dfrac{3}{2}\)
Bài 2:
d; \(\dfrac{3}{5}\) : (-5) = \(\dfrac{3}{5}\) x \(\dfrac{1}{\left(-5\right)}\) = \(\dfrac{3}{-25}\) = \(\dfrac{-3}{25}\)
e; \(\dfrac{-4}{15}\): 2 = \(\dfrac{-4}{15}\) x \(\dfrac{1}{2}\) = \(\dfrac{-4}{30}\)
f; 24 : \(\dfrac{-6}{7}\) = 24 x \(\dfrac{7}{-6}\) = \(\dfrac{28}{-1}\) = -28
Bài 3:
b; \(\dfrac{-4}{5}\) : \(\dfrac{2}{7}\) + \(\dfrac{4}{7}\)
= \(\dfrac{-4}{5}.\dfrac{7}{2}\) + \(\dfrac{4}{7}\)
= \(\dfrac{-14}{5}\) + \(\dfrac{4}{7}\)
= \(\dfrac{-98}{35}\) + \(\dfrac{20}{35}\)
= \(\dfrac{-78}{35}\)
\(\dfrac{1}{2}x-\dfrac{3}{5}x=-\dfrac{2}{3}\)
\(x\left(\dfrac{1}{2}-\dfrac{3}{5}\right)=-\dfrac{2}{3}\)
\(\dfrac{1}{10}x=-\dfrac{2}{3}\)
\(x=-\dfrac{20}{3}\)
Lời giải:
Gọi $d=ƯCLN(3n+1, n(3n+2))$
$\Rightarrow 3n+1\vdots d; n(3n+2)\vdots d$
$\Rightarrow n(3n+1)+n\vdots d$
Mà $3n+1\vdots d\Rightarrow n\vdots d$
$\Rightarrow 3n+1-3n\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy ps $\frac{3n+1}{n(3n+2)}$ là phân số tối giản.
\(\dfrac{2}{5}+\dfrac{3}{4}:x=-\dfrac{1}{2}\)
\(\Rightarrow\dfrac{3}{4}:x=-\dfrac{1}{2}-\dfrac{2}{5}\)
\(\Rightarrow\dfrac{3}{4}:x=-\dfrac{9}{10}\)
\(\Rightarrow x=\dfrac{3}{4}:-\dfrac{9}{10}\)
\(\Rightarrow x=-\dfrac{5}{6}\)
Vậy; ...
\(\dfrac{5355}{918}=\dfrac{5355:153}{918:153}=\dfrac{35}{6}\)
\(\dfrac{1}{2}a^2+1=2\)
\(\Rightarrow\dfrac{1}{2}a^2=2-1\)
\(\Rightarrow\dfrac{1}{2}a^2=1\)
\(\Rightarrow a^2=2\)
\(\Rightarrow a^2=\left(\sqrt{2}\right)^2\)
\(\Rightarrow a\in\left\{\sqrt{2};-\sqrt{2}\right\}\)
\(\dfrac{1}{2a^2+1}=2\)
\(2a^2+1=1\)
\(2a^2=0\)
\(a^2=0\)
\(a=0\)
2008 nhé chúc năm mới vui vẻ