Cho hình vẽ sau biết \(\widehat{\text{a}}=140^o\widehat{B}=70^o\widehat{C}=150^o\)
Chứng minh rang \(\text{a}x\)// Cy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
#)Giải :
Ta có : 1839 > 1639 = 2156 > 2135 = 3227
1839 > 3227 => (-18)39 < (-32)27
Vậy : (-18)39 < (-32)27
#~Will~be~Pens~#
Trả lời :
Ta có: 3227=(25)27=2135<2156=24.39=1639<1839
=>(-32)27>(-18)39
Vậy (-32)27>(-18)39
\(\downarrow\)
1+2+3+4+...+n=aaa
Từ 1; 2; ………; n có n số hạng
Suy ra 1 +2 +…+ n
Mà theo bài ra ta có 1 +2 +3+…..+n =
Suy ra = a . 111 = a . 3.37
Suy ra: n(n + 1) = 2.3.37.a
Vì tích n(n + 1) chia hết cho số nguyên tố 37 nên n hoặc n + 1 chia hết cho 37
Vì số có 3 chữ số suy ra n+1 < 74 n = 37 hoặc n + 1 = 37
Với n = 37 thì (không thỏa mãn )
Với n + 1 = 37 thì ( thoả mãn)
Vậy n =36 và a = 6. Ta có: 1+2+3+…..+ 36 = 666
#)Giải :
Từ 1; 2; 3; ........; n có n số hạng
Suy ra 1 + 2 + ... + n
Mà theo đầu bài, ta có : 1 + 2 + 3 + ... + n = aaa
=>a = a . 111 = a . 3 . 37
=>n( n + 1 ) = 2 . 3 . 37 . a
Vì tích n( n + 1 ) chia hết cho số nguyên tố 37 nên n hoặc n + 1 chia hết cho 37
Vì số có 3 chữ số => n + 1 < 74 n = 37 hoặc n + 1 = 37
+) Với n = 37 ( không thỏa mãn )
+) Với n + 1 = 37 ( thỏa mãn )
=> n = 37 - 1 = 36
#~Will~be~Pens~#
A = 3 x | 1 - 2x | - 5
Ta co : | 1 - 2x | \(\ge\)0 nen 3 x | 1 - 2x | \(\ge\)0
A = 3 x | 1 - 2x | - 5 \(\ge\)- 5
Vậy min A = -5 \(\Leftrightarrow\)x = \(\frac{1}{2}\)
1 bài thôi . còn lại tương tự
bài cuối dùng BĐT : | a | + | b | \(\ge\)| a + b | nhé
Gọi kế hoạch chưa thay đổi là: a,b,c(a,b,c \(\ne0\))
Gọi kế hoạch thay đổi là: x,y,z (x,y,z\(\ne0\))
TBRTC:
\(\frac{a}{7}=\frac{b}{8}=\frac{c}{9}\Rightarrow\frac{a}{49}=\frac{b}{56}=\frac{c}{63}=\frac{a+b+c}{168}\)
\(\frac{x}{6}=\frac{y}{7}=\frac{z}{8}\Rightarrow\frac{x}{48}=\frac{y}{56}=\frac{z}{64}=\frac{x+y+z}{168}\)
Và a+b+c=x+y+z
\(\Rightarrow\frac{a}{49}=\frac{x}{48}\Rightarrow x< a\left(lo\text{ại}\right)\)
\(\Rightarrow\frac{b}{56}=\frac{y}{56}\Rightarrow b=y\left(lo\text{ại}\right)\)
\(\Rightarrow\frac{c}{63}=\frac{z}{64}\Rightarrow c< z\left(tm\right)\)(1)
\(\Rightarrow z-c=\frac{1}{2}\)
Áp dụng t/c dãy tỉ số = nhau (1) ta có:
\(\Rightarrow\frac{c}{63}=\frac{z}{64}=\frac{z-c}{1}=\frac{1}{2}\)
\(z=\frac{64.1}{2}=32\)
\(x=\frac{48.1}{2}=24\)
\(y=\frac{56.1}{2}=28\)
Vậy...
VD1: So sánh hai số hữu tỉ -0,6 và 1−21−2
Giải:
Ta có: −0,6=−610;1−2=−510.−0,6=−610;1−2=−510.
Vì −6<−5−6<−5 và 10>010>0 nên −610<−510−610<−510 hay −0,6<1−2−0,6<1−2 .
- Nếu x > y thì trên trục số, điểm x ở bên trái điểm y.
- Số hữu tỉ lớn hơn 0 gọi là số hữu tỉ dương;
Số hữu tỉ nhỏ hơn 0 gọi là số hữu tỉ âm;
Số hữu tỉ 0 không là số hữu tỉ dương cũng không là số hữu tỉ âm.
Ta có \(|a-b|+|b-c|+|c-d|+|d-a|\)
cúng tính chẵn lẻ với \(|\left(a-b\right)+\left(b-c\right)+\left(c-d\right)+\left(d-a\right)|\)
\(=|a-b+b-c+c-d+d-a|\)
\(=0\)là số chẵn
Suy ra \(|\left(a-b\right)+\left(b-c\right)+\left(c-d\right)+\left(d-a\right)|\)
là số chăn
Suy ra \(|a-b|+|b-c|+|c-d|+|d-a|\)
là số chẵn (1)
Mà 2019 là số lẻ nên \(|a-b|+|b-c|+|c-d|+|d-a|\)
là số lẻ (2)
Từ (1) và (2) suy ra:
Mâu thuẫn
Vậy Ko có các số nguyên nào TM
Nhớ tích cho mk nha
#)Trả lời :
Câu 1 :
a) Gọi ba phần đó là a, b, c
Theo đầu bài, ta có : a, b, c tỉ lệ thuận với 3; 4; 5 => \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)và a + b + c = 552
Áp dụng tính chất dãy tỉ số bằng nhau ( đến đây bn tự lm típ hen )
b) Gọi ba phần đó là a, b, c
Theo đầu bài, ta có : a, b, c tỉ lệ nghịch với 3, 4, 6 => a, b, c tỉ lệ nghịch với \(\frac{1}{3};\frac{1}{4};\frac{1}{6}\)
=> \(\frac{a}{\frac{1}{3}}=\frac{b}{\frac{1}{4}}=\frac{c}{\frac{1}{6}}\)và a + b + c = 315
Áp dụng tính chất dãy tỉ số bằng nhau ( đến đây tự lm típ hen :D )
Câu 2 :
\(\frac{x}{11}=\frac{y}{12}\Rightarrow\frac{2x}{22}=\frac{y}{12}\left(1\right)\)
\(\frac{y}{3}=\frac{z}{7}\Rightarrow\frac{y}{12}=\frac{z}{28}\left(2\right)\)
Từ (1) và (2) suy ra \(\frac{2x}{22}=\frac{y}{12}=\frac{z}{28}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{2x}{22}=\frac{y}{12}=\frac{z}{28}=\frac{2x-y+z}{22-12+28}=\frac{152}{38}\)
\(\Rightarrow x=44;y=48;z=112\)
#~Will~be~Pens~#
1a) Gọi ba phần đó là x, y, z.
Vì x, y, z tỉ lệ với 3, 4, 5 nên \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tính chất của dãy các tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{3+4+5}=\frac{552}{12}=46\)
\(\Rightarrow\hept{\begin{cases}x=46.3=138\\y=46.4=184\\z=46.5=230\end{cases}}\)
Vậy 3 phần đó là 138, 184, 230
Đặt \(\hept{\begin{cases}a-b=x\\b-c=y\\c-a=z\end{cases}}\)
\(A=\frac{2}{x}+\frac{2}{y}+\frac{2}{z}+\frac{x^2y^2z^2}{xyz}\)
\(A=\frac{\left(2y+2x\right).z+2xy}{xyz}+\frac{x^2+y^2+x^2}{xyz}\)
\(A=\frac{2yz+2xz+2xy}{xyz}+\frac{x^2+y^2+z^2}{xyz}\)
\(A=\frac{2yz+2xz+2xy+x^2+y^2+z^2}{xyz}=\frac{\left(x+y+z\right)^2}{xyz}\)
Có đúng k nhỉ k chắc