\(\left(\frac{1-\sqrt{a}}{1-a}\right)^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi thương khi chia R(x) cho \(x^2+x-2\) ,ta có:
\(R\left(x\right)=x^3+ax+b=\left(x^2+x-2\right)Q\left(x\right)=\left(x-1\right)\left(x+2\right)Q\left(x\right)\)
Cho lần lượt \(x=1,x=-2\) , ta được:
\(\hept{\begin{cases}1^3+a.1+b=0\\\left(-2\right)^3-2a+b=0\end{cases}\Rightarrow\hept{\begin{cases}1+a+b=0\\-8-2a+b=0\end{cases}\Rightarrow}\hept{\begin{cases}a+b=-1\\-2a+b=8\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}a+b=-1\\-2a+b-\left(a+b\right)=8-\left(-1\right)\end{cases}}\Rightarrow\hept{\begin{cases}a+b=-1\\-3a=9\end{cases}\Rightarrow\hept{\begin{cases}-3+b=-1\\a=-3\end{cases}}}\)
Vậy \(a=-3,b=2\)
Hình bạn tự vẽ nhé
a, Ta có: D đối xứng với H qua AB \(\Rightarrow\)AB là đường trung trực mà A \(\in\)AB \(\Rightarrow AD=AH\)(1)
Tương tự ta có: \(AH=AE\)(2)
Từ (1), (2) \(\Rightarrow AD=AE\)
\(\Delta ADH\)có: \(AD=AH\left(cmt\right)\Rightarrow\Delta ADH\)cân tại A có AB là đường trung trực \(\Rightarrow\)AB là phân giác của \(\widehat{DAH}\)\(\Rightarrow\widehat{DAB}=\widehat{BAH}\)
Chứng minh tương tự với \(\Delta AHE\)\(\Rightarrow\)AC là phân giác của \(\widehat{HAE}\)\(\Rightarrow\widehat{HAC}=\widehat{CAE}\)
\(\Delta ABC\)có: \(\widehat{BAH}+\widehat{HAC}=90^o\)
Ta có: \(\widehat{DAB}+\widehat{BAH}+\widehat{HAC}+\widehat{CAE}=\widehat{DAE}\)
hay \(2\widehat{BAH}+2\widehat{HAC}=\widehat{DAE}\)
\(2\left(\widehat{BAH}+\widehat{HAC}\right)=\widehat{DAE}\)
\(2.90^o=\widehat{DAE}=180^o\)
\(\Rightarrow\)D, A, E thẳng hàng
mà \(AD=AE\left(cmt\right)\)
\(\Rightarrow\)A là trung điểm của DE
b, Ta có: AB là đường trung trực mà B \(\in\)AB \(\Rightarrow BD=BH\)
Tương tự ta có: \(CH=CE\)
Xét \(\Delta ADB\)và \(\Delta AHB\)có:
AB chung
\(AD=AH\left(cmt\right)\)
\(DB=BH\left(cmt\right)\)
\(\Rightarrow\Delta ADB=\Delta AHB\left(c-c-c\right)\)\(\Rightarrow\widehat{AHB}=\widehat{ADB}=90^o\Rightarrow BD\perp DE\)
Chứng minh tương tự ta có: \(\Delta AHC=\Delta AEC\left(c-c-c\right)\)\(\Rightarrow\widehat{AHC}=\widehat{AEC}=90^o\Rightarrow EC\perp DE\)
Ta có: \(BD\perp DE\left(cmt\right)\)
\(EC\perp DE\left(cmt\right)\)
\(\Rightarrow BD//EC\)
Tứ giác BDEC có: \(BD//EC\left(cmt\right)\)\(\Rightarrow\)BDEC là hình thang có \(\widehat{BDE}=\widehat{DEC}=90^o\Rightarrow\)BDEC là hình thang vuông
\(\left(\frac{1-\sqrt{a}}{1-a}\right)^2\)
=\(\left[\frac{1-\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right]^2\)
=\(\left(\frac{1}{1+\sqrt{a}}\right)^2\)
=\(\frac{1}{1+2\sqrt{a}+a}\)
\(\left(\frac{1-\sqrt{a}}{1-a}\right)^2\)
\(=\left[\frac{1-\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right]^2\)
\(=\left(\frac{1}{1+\sqrt{a}}\right)^2\)
\(=\frac{1}{1+2\sqrt{a}+a}\)