K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2017

\(\sqrt{12-\frac{12}{x^2}}+\sqrt{x^2-\frac{12}{x^2}}=x^2\)

\(pt\Leftrightarrow\sqrt{12-\frac{12}{x^2}}-3+\sqrt{x^2-\frac{12}{x^2}}-1=x^2-4\)

\(\Leftrightarrow\frac{12-\frac{12}{x^2}-9}{\sqrt{12-\frac{12}{x^2}}+3}+\frac{x^2-\frac{12}{x^2}-1}{\sqrt{x^2-\frac{12}{x^2}}+1}=x^2-4\)

\(\Leftrightarrow\frac{\frac{3x^2-12}{x^2}}{\sqrt{12-\frac{12}{x^2}}+3}+\frac{\frac{x^4-x^2-12}{x^2}}{\sqrt{x^2-\frac{12}{x^2}}+1}-\left(x^2-4\right)=0\)

\(\Leftrightarrow\frac{\frac{3\left(x-2\right)\left(x+2\right)}{x^2}}{\sqrt{12-\frac{12}{x^2}}+3}+\frac{\frac{\left(x-2\right)\left(x+2\right)\left(x^2+3\right)}{x^2}}{\sqrt{x^2-\frac{12}{x^2}}+1}-\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(\frac{\frac{3}{x^2}}{\sqrt{12-\frac{12}{x^2}}+3}+\frac{\frac{x^2+3}{x^2}}{\sqrt{x^2-\frac{12}{x^2}}+1}-1\right)=0\)

SUy ra x=±2

11 tháng 8 2017

\(\sqrt{x^2}\)+\(\sqrt{x^2+3}\)+\(2x^2\)+3+2\(\sqrt{x^2\left(x^2+3\right)}\)=12

Đặt  \(\sqrt{x^2}\)+\(\sqrt{x^2+3}\)=a                                   (a>0)

=> \(2x^2\)+3+2\(\sqrt{x^2\left(x^2+3\right)}\)\(a^2\)

Chị QA 114 đấy

11 tháng 8 2017

Ta có BĐT \(x^2+1\ge2x\Leftrightarrow\left(x-1\right)^2\ge0\forall x\in R\)

Tương tự: \(y^2+1\ge2y;z^2+1\ge2z\)

\(\Rightarrow x^2+y^2+z^2+3\ge2\left(x+y+z\right)\left(1\right)\)

Và BĐT \(x^2+y^2+z^2\ge xy+yz+xz\left(2\right)\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\forall x,y,z\in R\)

Cộng theo vế 2 BĐT (1);(2) ta có:

\(2\left(x^2+y^2+z^2\right)+3\ge45\)

\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge42\Rightarrow x^2+y^2+z^2\ge21\)

Khi x=y=z=1

11 tháng 8 2017

Sửa đề : cho \(CM:x^2+y^2+z^2\ge21\)

Ta có : \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2xy-2xz\ge0\)

\(\Leftrightarrow x^2+y^2+z^2-xy-yz-xz\ge0\)

\(\Rightarrow x^2+y^2+z^2\ge xy+yz+xz\)(1)

Ta lại có : \(\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\ge0\)

\(\Leftrightarrow x^2+y^2+z^2-2x-2y-2z+3\ge0\)

\(\Rightarrow x^2+y^2+z^2\ge2x+2y+2z-3\)(2)

Cộng vế với vế của (1); (2) lại ta được :

\(2\left(x^2+y^2+z^2\right)\ge xy+yz+xy+2x+2y+2z-3\)

\(\Leftrightarrow2\left(x^2+y^2+z^2\right)\ge45-3=42\)

\(\Rightarrow x^2+y^2+z^2\ge\frac{42}{2}=21\)(đpcm)

11 tháng 8 2017

Hệ { x^3 + y^3 + z^3 = 3 
{ x + y + z = 3 
Ta có : x + y + z = 3 
<=> x + y = 3 - z 
<=> (x + y)^3 = (3 - z)^3 
<=> x^3 + 3x^2y + 3xy^2 + y^3 = 27 - 27z + 9z^2 - z^3 
<=> (x^3 + y^3 + z^3) + 3xy(x + y) + 9z(3 - z) = 27 
<=> 3 + 3xy(3 - z) + 9z(3 - z) = 27 
<=> 3xy(3 - z) + 9z(3 - z) = 24 
<=> (3 - z)(xy + 3z) = 8 (*) 
Vì x,y,z nguyên nên (*) tương tương với các hệ sau: 
{ 3 - z = 8 => z = - 5 => x + y = 3 - z = 8 
{ xy + 3z = 1 => xy = 1 - 3z = 16 
=> x, y là nghiệm của pt: t^2 - 8t +16 = 0 <=> (t - 4)^2 = 0 <=> x = y = 4 
{ 3 - z = - 8 => z = 11 => x + y = 3 - z = -8 
{ xy + 3z = -1 => xy = - 1 - 3z = - 34 
=> x, y là nghiệm của pt: t^2 + 8t - 34 = 0 => loại vì x, y không nguyên 
{ 3 - z = 4 => z = -1 => x + y = 3 - z = 4 
{ xy + 3z = 2 => xy = 2 - 3z = 5 
=> x, y là nghiệm của pt: t^2 - 4t + 5 = 0 => vô nghiệm 
{ 3 - z = - 4 => z = 7 => x + y = 3 - z = - 4 
{ xy + 3z = - 2 => xy = - 2 - 3z = -23 
=> x, y là nghiệm của pt: t^2 + 4t - 23 = 0 => loại vì x, y không nguyên 
{ 3 - z = 2 => z = 1 => x + y = 3 - z = 2 
{ xy + 3z = 4 => xy = 4 - 3z = 1 
=> x, y là nghiệm của pt: t^2 - 2t +1 = 0 => x = y = 1 
{ 3 - z = - 2 => z = 5 => x + y = 3 - z = - 2 
{ xy + 3z = - 4 => xy = - 4 - 3z = - 19 
=> x, y là nghiệm của pt: t^2 + 2t -19 = 0 => loại vì x, y không nguyên 
{ 3 - z = 1 => z = 2 => x + y = 3 - z = 1 
{ xy + 3z = 8 => xy = 8 - 3z = 2 
=> x, y là nghiệm của pt: t^2 - t + 2 = 0 => vô nghiệm 
{ 3 - z = - 1 => z = 4 => x + y = 3 - z = -1 
{ xy + 3z = - 8 => xy = - 8 - 3z = - 20 
=> x, y là nghiệm của pt: t^2 + t - 20 = 0 => x = - 5; y = 4 hoặc x = 4; y = -5 
Kết luận: Vậy tập nghiệm nguyên của hệ là S ={(x,y,z)} = {(1,1,1);(4,4,-5);(-5,4,4);(4,-5,4)}

11 tháng 8 2017

trc nhìn đề xong copier đã hành động xong rồi, mà copy ko nhìn hả bn ei :v

11 tháng 8 2017

ĐK : \(\hept{\begin{cases}x-1\ge0\\x^2-5x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge1\\x\left(x-5\right)\ge0\end{cases}\Rightarrow x\ge5}\)

\(6\sqrt{x-1}=x^2-5x\)

\(\Leftrightarrow36\left(x-1\right)=\left(x^2-5x\right)^2\)

\(\Leftrightarrow36x-36=x^4-10x^3+25x^2\)

\(\Leftrightarrow x^4-10x^3+25x^2-36x+36=0\)

\(\Leftrightarrow\left(x^4-2x^3\right)+\left(-8x^3+16x^2\right)+\left(9x^2-18x\right)+\left(-18x+36\right)=0\)

\(\Leftrightarrow x^3\left(x-2\right)-8x^2\left(x-2\right)+9x\left(x-2\right)-18\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-8x^2+9x-18\right)=0\)

Đến đây dễ rùi nha

11 tháng 8 2017

x=2 thì loại pt bậc 3 trong ngoặc cũng ko phân tích được, nghiệm xấu lv max, dễ cái j :V

11 tháng 8 2017

câu 2 có nghiệm x=2 , liên hợp đi 

11 tháng 8 2017

bối rối ở chỗ 2x3 nếu mũ 2 thì PP tìm nghiệm nguyên - Tuần 12 - Trần Văn Mười - Website của Trần Văn Mười

Câu hỏi của Minh Triều - Toán lớp 9 - Học toán với OnlineMath

Giải phương trình với nghiệm nguyên - Giáo Án, Bài Giảng

Mũ 3 dg mò nghiệm :3

12 tháng 8 2017

để xem <(") <(") 

11 tháng 8 2017

Áp dụng BĐT C-S dạng ENgel ta có:

$$\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a} \ge \frac{3}{3+abc} $$

$$\frac{1}{a+3b}+\frac{1}{b+3c}+\frac{1}{c+3a} \ge \frac{9}{4(a+b+c)} $$

Ta chứng minh $$ \frac{9}{4(a+b+c)} \ge \frac{3}{3+abc} $ hay $9+3abc \ge 4(a+b+c) $$

Đặt $ a= 1-x, b=1-y, c=1-z $ rồi xài AM-GM

11 tháng 8 2017

đặt xong rồi khai triển rồi AM-GM phải không ạ?