Bài 1: Tìm MinA:
A=\(\sqrt{x-2\sqrt{x-1}}+\sqrt{x+2\sqrt{x-1}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với a,b,c \(\ge\) 0, ta có:
\(BĐT\Leftrightarrow\frac{2}{a}+\frac{2}{b}+\frac{2}{c}-\frac{2}{\sqrt{ab}}-\frac{2}{\sqrt{bc}}-\frac{2}{\sqrt{ca}}\ge0\)
\(\Leftrightarrow\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}}\right)^2+\left(\frac{1}{\sqrt{b}}-\frac{1}{\sqrt{c}}\right)^2+\left(\frac{1}{\sqrt{c}}-\frac{1}{\sqrt{a}}\right)^2\ge0\)(đúng)
hình như sai đề mk ko hiểu đề này thì mk hiểu
Từ điểm A nằm ngoài đường tròn (O;R) kẻ 2 tiếp tuyến AB và AC. Gọi H là giao điểm của OA và BC. a) Chứng minh tứ giác ABOC nội tiếp. b) Tính tích OH.OA theo R
bài làm
Từ điểm A nằm ngoài đường tròn (O;R) kẻ 2 tiếp tuyến AB và AC. Gọi H là giao điểm của OA và BC.
a) Chứng minh tứ giác ABOC nội tiếp
b) Tính tích OH.OA theo R
c) Gọi E là hình chiếu của C trên đường kính BD của đường tròn tâm O. Chứng minh góc HEB bằng với góc HAB
d) AD cắt CE ở K. Chứng minh K là trung điểm của CE
e) Tính theo R diện tích hình giới hạn bởi 2 tiếp tuyến AB, AC và cung nhỏ BC của đường tròn tâm O trong trường hợp OA = 2R
Ta có :
\(A^2=x+3+5-x+2\sqrt{\left(x+3\right)\left(5-x\right)}=8+2\sqrt{\left(x+3\right)\left(5-x\right)}\)
Áp dụng bđt Cauchy ngược ta có :
\(2\sqrt{\left(x+3\right)\left(5-x\right)}\le x+3+5-x=8\)
\(\Rightarrow A^2\le8+8=16\Rightarrow A\le4\)(đpcm)
A= \(\sqrt{x-1-2\sqrt{x-1}+1}+\sqrt{x-1+2\sqrt{x-1}+1}\)
=\(\sqrt{\left(\sqrt{x-1}-1\right)^2}+\sqrt{\left(\sqrt{x-1}+1\right)^2}\)
=\(\left|\sqrt{x-1}-1\right|+\left|\sqrt{x-1}+1\right|\)
\(=\left|1-\sqrt{x-1}\right|+\left|\sqrt{x-1}+1\right|\)
\(\ge\left|\sqrt{x-1}+1+1-\sqrt{x-1}\right|\)
=2.
dấu = khi và chỉ khi \(\left(\sqrt{x-1}+1\right).\left(1-\sqrt{x-1}\right)=0\)
=0 nha bn