Cho tứ giác ABCD có A=a, B=b. Hai đường thẳng AD và BC cắt nhau tại E, hai đường thẳng AB và DC cắt nhau tại F. Các tia phân giác của hai góc AEB và AFD cắt nhau tại I. Tính góc EIF theo a b
VỄ HÌNH GIÚP MÌNH VỚI NHA
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x3 - x2 - 5x + 125
=( x3 + 125 ) - ( x2 + 5x )
=(x+5)( x2- 5x +25 ) - x( x + 5 )
=(x+5)( x2- 5x + 25 - x )
=( x + 5 )( x2-4x + 25 )
\(=y\times\left(x^2+4x+4-y^2\right)\)
\(=y\left[\left(x+2\right)^2-y^2\right]=y\left(x+2-y\right)\left(x+2+y\right)\)
Ta có :
\(\left|x-2010\right|\ge0\)
và \(\left(y+2011\right)^{2010}\ge0\)
Dấu " =" xảy ra khi \(\hept{\begin{cases}\left|x-2010\right|=0\\\left(y+2011\right)^{2010}=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-2010=0\\y+2011=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=2010\\y=-2011\end{cases}}\)
Vậy GTNN của A xảy ra khi
\(\hept{\begin{cases}x=2010\\y=-2011\end{cases}}\)
.....
Ta có :
\(25-y^2=8\left(x-2009\right)^2\)
\(\Rightarrow8\left(x-2009\right)^2\le25\)
\(\Leftrightarrow\left(x-2009\right)^2\le\frac{25}{8}\)
\(\Rightarrow0\le\left(x-2009\right)^2\le3\)
\(\Rightarrow\left(x-2009\right)^2\in\left\{0;1\right\}\)
+) Trường hợp 1 :
\(\Rightarrow\left(x-2009\right)^2=0\)
\(\Rightarrow x=2009\)
\(\Rightarrow y=5\)
\(\Leftrightarrow\hept{\begin{cases}x=2009\\y=5\end{cases}}\)
+) Trường hợp 2 :
\(\left(x-2009\right)^2=1\)
\(\Rightarrow x-2009=1\)
\(\Rightarrow x=2010\)
\(\Rightarrow25-y^2=8\)
\(\Rightarrow y^2=17\) (loại)
+) Trường hợp 3 :
\(\left(x-2009\right)^2=1\)
\(\Rightarrow x=2008\)
\(\Rightarrow25-y^2=8\)(loại)
Vậy ......
\(\)
Ta có: a2+b2+c2=ab+bc+ca
=>2(a2+b2+c2)=2(ab+bc+ca)
<=>2a2+2b2+2c2=2ab+2bc+2ca
<=>2a2+2b2+2c2-2ab-2bc-2ca=0
<=>a2+a2+b2+b2+c2+c2-2ab-2bc=2ca=0
<=>(aa-2ab+b2)+(b2-2bc+b2)+(a2-2ca+c2)=0
<=>(a-b)2+(b-c)2+(a-c)2=0
=>hoặc (a-b)2=0 hoặc (b-c)2=0 hoặc (a-c)2=0<=>a-b=0 hoặc b-c=0 hoặc a-c=0<=>a=b hoặc b=c hoặc a=c
=> a=b=c (đpcm)
\(a^2+b^2+c^2=ab+bc+ca\)
<=> \(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
<=> \(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
<=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
<=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\)<=> \(\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\)<=> \(a=b=c\)
kham khảo tại đây nha:
https://olm.vn/hoi-dap/question/1026355.html?auto=1
Câu hỏi của Lê Hồ Anh Dũng - Toán lớp 8 - Học toán với OnlineMath