Tìm GTNN
M=x(x+1)(x+2)(x+3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+x+2\)
\(=x^3+x^2-x^2-x+2x+2\)
\(=x^2\left(x+1\right)-x\left(x+1\right)+2\left(x+1\right)\)
\(=\left(x^2-x+2\right)\left(x+1\right)\)
Chúc bạn học tốt.
\(x^3+x+2\)
\(=x^3+x^2-x^2-x+2x+2\)
\(=x^2\left(x+1\right)-x\left(x+1\right)+2\cdot\left(x+1\right)\)
\(=\left(x^2-x+2\right)\left(x+1\right)\)
\(x^2-y^2+10x-6y+16\)
\(=\left(x^2+10x+25\right)-\left(y^2+6y+9\right)\)
\(=\left(x+5\right)^2-\left(y+3\right)^2\)
\(=\left(x+5-y-3\right)\left(x+5+y+3\right)\)
\(=\left(x-y+2\right)\left(x+y+8\right)\)
\(A=x^2+5y^2-4xy+2x-8y+202\)
\(=x^2+4y^2+1-4xy-4y+2x+\left(y^2-4y+4\right)+197\)
\(=\left(x-2y+1\right)^2+\left(y-2\right)^2+197\ge197\forall x;y\)
Dâu "=" xảy ra khi:
\(\hept{\begin{cases}x-2y+1=0\\y-2=0\end{cases}\Rightarrow\hept{\begin{cases}x-4+1=0\\y=2\end{cases}\Rightarrow}\hept{\begin{cases}x=3\\y=2\end{cases}}}\)
Vậy min A = 197 khi \(x=3,y=2\)
Chúc bạn học tốt.
JÚPPPPPPPPPPPPPPPPPPPPPP
VỚIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
MỌIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
NGƯỜIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
ƠIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
a) \(9x^2+6x+1=\left(3x+1\right)^2\)
b)\(x^2-x+\frac{1}{4}=\left(x-\frac{1}{2}\right)^2\)
c)\(x^2y^4-2xy^2+1=\left(xy^2-1\right)^2\)
d) \(x^2+\frac{2}{3}x+\frac{1}{9}=\left(x+\frac{1}{3}\right)^2\)
a) 9x2 + 6x + 1 = ( 3x + 1 )2
b) x2 - x + 1/4 = ( x - 1/2)2
c) x2 . y4 - 2xy2 + 1 = ( xy2 - 1 ) 2
d) x2 + 2/3x + 1/9 = (x+1/3)2
\(M=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)
\(=\left[x\left(x+3\right)\right].\left[\left(x+1\right)\left(x+2\right)\right]\)
\(=\left(x^2+3x\right)\left(x^2+3x+2\right)\)
\(=\left(x^2+3x+1-1\right)\left(x^2+3x+1+1\right)\)
\(=\left(x^2+3x+1\right)^2-1\ge-1\forall x\)
Dấu "=" xảy ra khi:
\(x^2+3x+1=0\)
\(\Rightarrow x^2+3x+\frac{9}{4}-\frac{5}{4}=0\)
\(\Rightarrow\left(x+\frac{3}{2}\right)^2-\frac{5}{4}=0\)
\(\Rightarrow\left(x+\frac{3}{2}\right)^2=\frac{5}{4}\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{3}{2}=\sqrt{\frac{5}{4}}\\x+\frac{3}{2}=-\sqrt{\frac{5}{4}}\end{cases}}\Rightarrow\orbr{\begin{cases}x+\frac{3}{2}=\frac{\sqrt{5}}{2}\\x+\frac{3}{2}=-\frac{\sqrt{5}}{2}\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{\sqrt{5}-3}{2}\\x=\frac{-\sqrt{5}-3}{2}\end{cases}}}\)
Vậy GTNN của M = -1
Chúc bạn học tốt.