Cho 2 đa thức: P(x)= 2x4 + 3x3 + 3 - 3x2 + 3x + 4x2 - x4 - x
Q(x)= x4 - 2x + 4 + x3 + 3x2 + 4x - 2 - x2
a, Thu gọn và sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm dần của biến
b, Tính P(x) + Q(x) , P(x) - Q(x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{-3}{26}+2\dfrac{4}{69}\)
\(=\dfrac{-3}{26}+\dfrac{142}{69}\)
\(=\dfrac{-3.69}{26.69}+\dfrac{142.26}{26.69}\)
\(=\dfrac{-207+3692}{1794}\)
\(=\dfrac{3485}{1794}\)
Bài 5 :
a) \(\dfrac{y}{4}=\dfrac{9}{y}\)
\(\Rightarrow y^2=36\left(y\ne0\right)\)
\(\Rightarrow y=\pm6\)
b) \(\dfrac{y+7}{20}=\dfrac{5}{y+7}\left(y\ne-7\right)\)
\(\Rightarrow\left(y+7\right)^2=100=10^2\)
\(\Rightarrow\left[{}\begin{matrix}y+7=10\\y+7=-10\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}y=3\\y=-17\end{matrix}\right.\)
c) \(\dfrac{4-5y}{3}=\dfrac{y+2}{5}\)
\(\Rightarrow5\left(4-5y\right)=3\left(y+2\right)\)
\(\Rightarrow20-25y=3y+6\)
\(\Rightarrow28y=14\)
\(\Rightarrow y=\dfrac{14}{28}=\dfrac{1}{2}\)
Bài 4 :
\(\dfrac{a}{5}=\dfrac{b}{7}=\dfrac{c}{10}\)
\(\Rightarrow\dfrac{2a}{10}=\dfrac{3b}{21}=\dfrac{4c}{40}=\dfrac{2a+3b-4c}{10+21-40}=\dfrac{81}{-9}=-9\)
\(\Rightarrow\left\{{}\begin{matrix}a=-9.5=-45\\b=-9.7=-63\\c=-9.10=-90\end{matrix}\right.\)
\(x+y-2xy=4\)
\(\Rightarrow\left(\sqrt[]{x}-\sqrt[]{y}\right)^2-2^2=0\)
\(\Rightarrow\left(\sqrt[]{x}-\sqrt[]{y}-2\right)\left(\sqrt[]{x}-\sqrt[]{y}+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt[]{x}-\sqrt[]{y}-2=0\\\sqrt[]{x}-\sqrt[]{y}+2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt[]{x}-\sqrt[]{y}=2\\\sqrt[]{x}-\sqrt[]{y}=-2\end{matrix}\right.\) \(\left(x;y\ge0\right)\)
\(TH1:\sqrt[]{x}-\sqrt[]{y}=2\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(4;0\right);\left(9;1\right);\left(16;4\right);...\right\}\left(x;y\inℕ\right)\)
\(TH2:\sqrt[]{x}-\sqrt[]{y}=-2\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(0;4\right);\left(1;9\right);\left(4;16\right);...\right\}\left(x;y\inℕ\right)\)
Đính chính mình nhầm sorry
\(x+y-2xy=4\)
\(\Rightarrow2x+2y-4xy=8\)
\(\Rightarrow2x-4xy+2y=8\)
\(\Rightarrow2x\left(1-2y\right)-\left(1-2y\right)=8-1\)
\(\Rightarrow\left(2x-1\right)\left(1-2y\right)=7\)
\(\Rightarrow\left(2x-1\right);\left(1-2y\right)\in\left\{-1;1;-7;7\right\}\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(0;4\right);\left(1;-3\right);\left(-3;1\right);\left(4;0\right)\right\}\)
\(B=\dfrac{2n+6}{n-5}=\dfrac{2n-10+16}{n-5}=\dfrac{2\left(n-5\right)+16}{n-5}=2+\dfrac{16}{n-5}\)
Để \(B=2+\dfrac{16}{n-5}\inℤ\)
\(\Rightarrow n-5\in\left\{-1;1;-2;2;-4;4;-8;8;-16;16\right\}\)
\(\Rightarrow n\in\left\{4;6;3;7;1;9;-3;13;-11;21\right\}\)
Có (3x - \(\dfrac{1}{6}\))2 ≥ 0 ∀ x; |2y-6| ≥ 0 ∀ y
=> (3x - \(\dfrac{1}{6}\))2 + |2y-6| ≥ 0 ∀x,y
Mà (3x - \(\dfrac{1}{6}\))2 + |2y-6| ≤ 0
=> (3x - \(\dfrac{1}{6}\))2 = 0; |2y - 6| = 0
=> x = \(\dfrac{1}{18}\); y = 3;
=> A = \(\left(\dfrac{1}{18}\right)^2\) + 32 = \(9\dfrac{1}{324}\)
Bài 9:
a.
$2,5-(\frac{-3}{4})=2,5+\frac{3}{4}=\frac{5}{2}+\frac{3}{4}=\frac{13}{4}$
b.
$3,5-(\frac{-2}{7})=3,5+\frac{2}{7}=\frac{53}{14}$
c. Trùng câu b
Bài 10:
a.
$0,4+(-2\frac{4}{5})=0,4-(2+\frac{4}{5})=0,4-2,8=-2,4$
b.
$-1\frac{1}{4}-(-2,25)=-1,25+2,25=1$
c.
$-4,75-1\frac{7}{12}=-4,75-1-\frac{7}{12}=-5,75-\frac{7}{12}=\frac{-23}{4}-\frac{7}{12}=\frac{-19}{3}$
\(A=\left(\dfrac{1}{4.9}+\dfrac{1}{9.14}+..+\dfrac{1}{44.49}\right)\left(\dfrac{1-3-5-7-..-49}{89}\right)\\ A=\dfrac{1}{5}\left(\dfrac{5}{4.9}+\dfrac{5}{9.14}+..+\dfrac{5}{44.49}\right)\left(\dfrac{1-3-5-7-...-49}{89}\right)\\ A=\dfrac{1}{5}\left(\dfrac{1}{4}-\dfrac{1}{49}\right)\left(\dfrac{1-3-5-7-...-49}{89}\right)\)
\(A=\dfrac{9}{196}\left(\dfrac{1-3-5-7-...-49}{89}\right)\)
Ta đặt: \(P=1-3-5-7-...-49\\ =1-\left(3+5+7+..+49\right)\\ =1-624\\ =-623\\ \Rightarrow\dfrac{9}{196}.-\dfrac{623}{89}=-\dfrac{9}{28}.\)
Ta có: �=(14⋅9+19⋅14+114⋅19+...+144⋅49)⋅1−3−5−7−...−4989A=(4⋅91+9⋅141+14⋅191+...+44⋅491)⋅891−3−5−7−...−49
⇔�=15⋅(54⋅9+59⋅14+514⋅19+...+544⋅49)⋅1−3−5−7−...−4989⇔A=51⋅(4⋅95+9⋅145+14⋅195+...+44⋅495)⋅891−3−5−7−...−49
⇔�=15⋅(14−19+19−114+114−119+...+144−149)⋅1−3−5−7−...−4989⇔A=51⋅(41−91+91−141+141−191+...+441−491)⋅891−3−5−7−...−49
⇔�=15⋅(14−149)⋅1−3−5−7−...−4989⇔A=51⋅(41−491)⋅891−3−5−7−...−49
⇔�=15⋅(49−44⋅49)⋅1−3−5−7−...−4989⇔A=51⋅(4⋅4949−4)⋅891−3−5−7−...−49
⇔�=15⋅45196⋅1−3−5−7−...−4989⇔A=51⋅19645⋅891−3−5−7−...−49
⇔�=9196⋅1−3−5−7−...−4989⇔A=1969⋅891−3−5−7−...−49
⇔�=9196⋅−62389=−928⇔A=1969⋅89−623=−289
a) \(...=P\left(x\right)=2x^4-x^4+3x^3+4x^2-3x^2+3x-x+3\)
\(P\left(x\right)=x^4+3x^3+x^2+2x+3\)
\(...=Q\left(x\right)=x^4+x^3+3x^2-x^2+4x+4-2\)
\(Q\left(x\right)=x^4+x^3+2x^2+4x+2\)
b) \(P\left(x\right)+Q\left(x\right)=\left(x^4+3x^3+x^2+2x+3\right)+\left(x^4+x^3+2x^2+4x+2\right)\)
\(\Rightarrow P\left(x\right)+Q\left(x\right)=2x^4+4x^3+3x^2+6x+5\)
\(P\left(x\right)-Q\left(x\right)=\left(x^4+3x^3+x^2+2x+3\right)-\left(x^4+x^3+2x^2+4x+2\right)\)
\(\)\(\Rightarrow P\left(x\right)-Q\left(x\right)=x^4+3x^3+x^2+2x+3-x^4-x^3-2x^2-4x-2\)
\(\Rightarrow P\left(x\right)-Q\left(x\right)=2x^3-x^2-2x+1\)