Cho tam giác ABC có góc BAC tù, vẽ BM vuông góc với CA tại M và CN vuông góc với BA tại N. Chứng minh rằng BA.BN+CA.CM= BC^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Toán có lời văn chính là toán có lời giải đó em nhé.
\(A=5x\left(x+y\right)+y\left(y-5x\right)-\left(y-x\right)\left(y+x\right)+2024\)
\(=5x^2+5xy+y^2-5xy-\left(y^2-x^2\right)+2024\)
\(=5x^2+y^2-y^2+x^2+2024=6x^2+2024>=2024>0\forall x\)
=>A luôn dương
Xét ΔOAB và ΔOCD có
\(\widehat{OAB}=\widehat{OCD}\)(AB//CD)
\(\widehat{AOB}=\widehat{COD}\)(hai góc đối đỉnh)
Do đó: ΔOAB~ΔOCD
=>\(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)(1)
Xét ΔOBP và ΔODQ có
\(\widehat{OBP}=\widehat{ODQ}\)(BP//DQ)
\(\widehat{BOP}=\widehat{DOQ}\)(hai góc đối đỉnh)
Do đó: ΔOBP~ΔODQ
=>\(\dfrac{OB}{OD}=\dfrac{OP}{OQ}\left(2\right)\)
Xét ΔOAM và ΔOCN có
\(\widehat{OAM}=\widehat{OCN}\)(AM//CN)
\(\widehat{AOM}=\widehat{CON}\)(hai góc đối đỉnh)
Do đó: ΔOAM~ΔOCN
=>\(\dfrac{OA}{OC}=\dfrac{OM}{ON}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\dfrac{OP}{OQ}=\dfrac{OM}{ON}\)
=>\(OP\cdot ON=OM\cdot OQ\)
Ta có:
\(B=2x^2-2x+3\\ =\dfrac{1}{2}\cdot\left(4x^2-4x+6\right)\\ =\dfrac{1}{2}\cdot\left[\left(4x^2-4x+1\right)+5\right]\\ =\dfrac{1}{2}\cdot\left[\left(2x-1\right)^2+5\right]\\ =\dfrac{1}{2}\left(2x-1\right)^2+\dfrac{5}{2}\)
\(\left(2x-1\right)^2\ge0\forall x\\ =>B=\dfrac{1}{2}\left(2x-1\right)^2+\dfrac{5}{2}\ge\dfrac{1}{2}\cdot0+\dfrac{5}{2}=\dfrac{5}{2}>0\)
=> B luôn có giá trị dương
\(B=2x^2-2x+3\\ \Leftrightarrow B=x^2+x^2-2x+1+2\\ \Leftrightarrow B=\left(x^2-2x+1\right)+x^2+2\\ \Leftrightarrow B=\left(x-1\right)^2+x^2+2\)
Nhận xét:
\(\left\{{}\begin{matrix}\left(x-1\right)^2\ge0,\forall x\\x^2\ge0,\forall x\end{matrix}\right.\)
\(\Rightarrow\left(x-1\right)^2+x^2+2>0,\forall x\)
hay \(B>0,\forall x\)
Vậy...
Bài 4:
\(2x^5yz^4\cdot\left(-\dfrac{1}{4}y^2z^3\right)\cdot2xz^6\cdot\left(\dfrac{-2}{3}x^2y\right)\left(\dfrac{1}{2}xy^2\right)\left(-x\right)\\ =\left(2\cdot-\dfrac{1}{4}\cdot2\cdot-\dfrac{2}{3}\cdot\dfrac{1}{2}\cdot-1\right)\cdot\left(x^5\cdot x\cdot x^2\cdot x\cdot x\right)\cdot\left(y\cdot y^2\cdot y\cdot y^2\right)\cdot\left(z^4\cdot z^3\cdot z^6\right)\\ =-\dfrac{1}{3}x^{10}y^6z^{13}\)
Phần hệ số là: `-1/3`
Phần biến: `x^10y^6z^13`
Bậc: `10+6+13=29`
Bài 5:
1) \(A=\dfrac{3}{2}x^5y^2\cdot\left(-2\right)xy=\left(\dfrac{3}{2}\cdot-2\right)\cdot\left(x^5\cdot x\right)\cdot\left(y^2\cdot y\right)=-3x^6y^3\)
Bậc là: `6+3=9`
Phần hệ số: `-3`
Phần biến: `x^6y^3`
2) Thay `x=-1,y=2` vào A ta có:
\(A=-3\cdot\left(-1\right)^6\cdot2^3=-3\cdot8=-24\)
Bài 4:
$2x^5yz^4(\frac{-1}{4}y^2z^3)2xz^6$
$=(2.\frac{-1}{4}.2).(x^5.x).(y.y^2).(z^4.z^3.z^6)$
$=-x^6y^3z^{13}$
Đơn thức trên gồm có:
+, Phần hệ số: -1
+, Phần biến: $x^6y^3z^{13}$
+, Bậc: $6+3+13=22$
$---$
$(\frac{-2}{3}x^2y)(\frac12 xy^2)(-x)$
$=[\frac{-2}{3}.\frac12.(-1)].(x^2.x.x).(y.y^2)$
$=\frac13 x^4y^3$
Đơn thức trên gồm có:
+, Phần hệ số: $\frac13$
+, Phần biến: $x^4y^3$
+, Bậc: $4+3=7$
Bài 5:
1) $A=\frac32 x^5y^2.(-2)xy$
$=[\frac32.(-2)].(x^5.x).(y^2.y)$
$=-3x^6y^3$
Bậc: $6+3=9$
Hệ số: $-3$
Biến: $x^6y^3$
2) Thay $x=-1;y=2$ vào $A$, ta được:
$A=-3.(-1)^6.2^3=-24$
\(4y^4+1\\ =4y^4+4y^2+1-4y^2\\ =\left(4y^4+4y^2+1\right)-4y^2\\ =\left(2y^2+1\right)^2-\left(2y\right)^2\\ =\left(2y^2-2y+1\right)\left(2y^2+2y+1\right)\)
Ta có: ΔAHD vuông tại H
=>AD là cạnh huyền
=>AD>AH
mà AD=BC(ABCD là hình thang cân)
nên BC>AH
Ta có: KI là đường trung trực của AH
=>KI\(\perp\)AH và K là trung điểm của AH
Ta có: KI\(\perp\)AH
AH\(\perp\)HD
Do đó: KI//HD
=>\(\widehat{KIH}=\widehat{IHD}\)(1)
Xét ΔAHD có
K là trung điểm của AH
KI//HD
Do đó: I là trung điểm của AD
ΔAHD vuông tại H
mà HI là đường trung tuyến
nên IH=ID
=>ΔIHD cân tại I
=>\(\widehat{IHD}=\widehat{IDH}=\widehat{ADC}\left(2\right)\)
ABCD là hình thang cân
=>\(\widehat{ADC}=\widehat{BCD}\)(hai góc kề đáy CD)(3)
Từ (1),(2),(3) suy ra \(\widehat{HIK}=\widehat{BCD}\)
a) ABCD là hình thang
=> \(\widehat{A}+\widehat{D}=180^o=>\widehat{A}=180^o-\widehat{D}\)
Mà:
\(\widehat{A}-\widehat{D}=20^o=>180^o-\widehat{D}-\widehat{D}=20^o\\ =>2\widehat{D}=180^o-20^o=160^o\\ =>\widehat{D}=\dfrac{160^o}{2}=80^o\)
=> \(\widehat{A}=180^o-80^o=100^o\)
\(\widehat{B}+\widehat{C}=180^o\) (ABCD là hình thang)
Mà: \(\widehat{B}=2\widehat{C}=>2\widehat{C}+\widehat{C}=180^o=>3\widehat{C}=180^o=>\widehat{C}=60^o\)
\(=>\widehat{B}=2\cdot60^o=120^o\)
b) Xét ΔABC có: \(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180^o\)
\(=>\widehat{BAC}=180^o-120^o-50^o=10^o\)
Mà: \(\widehat{DAC}+\widehat{BAC}=\widehat{DAB} =>\widehat{DAC}=\widehat{DAB}-\widehat{BAC}=100^o-10^o=90^o\)
`=> AD⊥AC`
Gọi H là giao điểm của CN với BM
Xét ΔHCB có
CM,BN là các đường cao
CM cắt BN tại A
Do đó: A là trực tâm của ΔHCB
=>HA\(\perp\)CB tại K
Xét ΔBKA vuông tại K và ΔBNC vuông tại N có
\(\widehat{CBN}\) chung
Do đó: ΔBKA~ΔBNC
=>\(\dfrac{BK}{BN}=\dfrac{BA}{BC}\)
=>\(BN\cdot BA=BK\cdot BC\)
Xét ΔCKA vuông tại K và ΔCMB vuông tại M có
\(\widehat{KCA}\) chung
Do đó: ΔCKA~ΔCMB
=>\(\dfrac{CK}{CM}=\dfrac{CA}{CB}\)
=>\(CM\cdot CA=CK\cdot CB\)
\(BA\cdot BN+CA\cdot CM\)
\(=BC\cdot BK+BC\cdot CK=BC\left(BK+CK\right)=BC^2\)