Cho tam giác EFM vuông tại E, phân giác FA. Kẻ Chứng minh :c) Trên tia đối của tia EF lấy điểm C sao cho CE = MB. Chứng minh:
ba điểm B, A, C thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{x-4}{15}=\dfrac{5}{3}\)
\(\Leftrightarrow x-4=15.\dfrac{5}{3}\)
\(\Leftrightarrow x-4=25\)
\(\Leftrightarrow x=29\) thỏa \(x\inℤ\)
b) \(\dfrac{x}{4}=\dfrac{18}{x+1}\left(x\ne-1\right)\)
\(\Leftrightarrow x\left(x+1\right)=18.4\)
\(\Leftrightarrow x\left(x+1\right)=72\)
vì \(72=8.9=\left(-8\right).\left(-9\right)\)
\(\Leftrightarrow x\in\left\{8;-9\right\}\left(x\inℤ\right)\)
c) \(2x+3⋮x+4\) \(\left(x\ne-4;x\inℤ\right)\)
\(\Leftrightarrow2x+3-2\left(x+4\right)⋮x+4\)
\(\Leftrightarrow2x+3-2x-8⋮x+4\)
\(\Leftrightarrow-5⋮x+4\)
\(\Leftrightarrow x+4\in\left\{-1;1;-5;5\right\}\)
\(\Leftrightarrow x\in\left\{-5;-3;-9;1\right\}\)
a) \(1,28=\dfrac{128}{100}=\dfrac{32}{25}\)
b) \(-3,12=-\dfrac{312}{100}=-\dfrac{78}{25}\)
\(5^{12}:5^{x+2}=\left(-5\right)^3.\left(-5\right)^7\)
\(\Rightarrow5^{12-x-2}=\left(-5\right)^{3+7}\)
\(\Rightarrow5^{10-x}=\left(-5\right)^{10}\)
\(\Rightarrow5^{10-x}=5^{10}\)
\(\Rightarrow10-x=10\)
\(\Rightarrow x=0\)
\(\Rightarrow\dfrac{z}{5}=\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z-x+y}{5-3+4}=1\)
\(\Rightarrow x=3;y=4;z=5\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{z-x+y}{3-4+5}=\dfrac{6}{4}=\dfrac{3}{2}\)
\(\Rightarrow x=\dfrac{3}{2}\cdot3=4,5\)
\(y=\dfrac{3}{2}\cdot4=6\)
\(z=\dfrac{3}{2}\cdot5=7,5\)
A B C M N D E
\(\widehat{ADB}=\widehat{MBC}\) Hai góc trên ở vị trí so le trong => AD//BC
\(\widehat{AEN}=\widehat{NCB}\) Hai góc trên ở vị trí so le trong => AE//BC
\(\Rightarrow AD\equiv AE\) (Từ 1 điểm ở ngoài 1 đường thẳng đã cho chỉ dựng được duy nhất 1 đường thẳng // với đường thẳng cho trước)
=> E; A; D thẳng hàng
Để chứng minh rằng ba điểm B, A và C thẳng hàng, chúng ta cần sử dụng các thông tin đã cho và các quy tắc trong hình học.
Gọi G là giao điểm của đường thẳng FA và đường thẳng CE.
Vì tam giác EFM vuông tại E, nên ta có: ∠EMF = 90° Vì FA là phân giác của ∠EMF, nên ta có: ∠FAG = ∠GEM Vì CE là tia đối của tia EF,
nên ta có: ∠GEC = ∠FEM Vì CE = MB, nên ta có: ∠ECG = ∠MBC
Vì ∠GEC = ∠FEM và ∠ECG = ∠MBC, nên ta có: ∠FEM = ∠MBC Vì ∠FAG = ∠GEM và ∠FEM = ∠MBC,
nên ta có: ∠FAG = ∠MBC
Vậy ta có hai góc cùng nhìn trên cùng một đường thẳng, nên ta có: B, A, C thẳng hàng.
Vậy ta đã chứng minh được rằng ba điểm B, A và C thẳng hàng.