Tìm điều kiện xác định
b) \(B=\frac{2018}{x^2-4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A\)xác định
\(\Leftrightarrow3x^2+4x-15\ne0\)
\(\Leftrightarrow\left(3x^2+9x\right)-\left(5x+15\right)\ne0\)
\(\Leftrightarrow3x\left(x+3\right)-5\left(x+3\right)\ne0\)
\(\Leftrightarrow\left(x+3\right)\left(3x-5\right)\ne0\)
\(\Leftrightarrow\orbr{\begin{cases}x\ne3\\x\ne\frac{5}{3}\end{cases}}\)
Vậy với \(\orbr{\begin{cases}x\ne3\\x\ne\frac{5}{3}\end{cases}}\)thì \(A\)xác định
Tham khảo nhé~
\(x^2-5\)
\(=\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)\)
\(x^2^{ }-5=x^2-\sqrt{5}=\left(x-5\right)\left(x+5\right)\)
ta có : \(\frac{4n^3-4n^2-n+4}{2n+1}=\frac{\left(2n+1\right)\left(2n^2-3n+1\right)+3}{2n+1}\)\(=2n^2-3n+1+\frac{3}{2n+1}\)
để \(4n^3-4n^2-n+4⋮2n+1\) thì \(2n+1\) là ước của \(3\) nên \(2n+1=\)\(\left(1;-1;3;-3\right)\)cái này phải là dấu ngoặc nhọn nha mình k ghi đc nên cậu tự sửa nhá
TH1: với \(2n+1=1\Leftrightarrow2n=0\Leftrightarrow n=0\)
TH2: với \(2n+1=-1\Leftrightarrow2n=-2\Leftrightarrow n=-1\)
TH3: với \(2n+1=3\Leftrightarrow2n=2\Leftrightarrow n=1\)
TH4: với \(2n+1=-3\Leftrightarrow2n=-4\Leftrightarrow n=-2\)
\(\frac{x^3+y^3+z^3-3xyz}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
\(=\frac{x^3+y^3+z^3-3xyz}{x^2-2xy+y^2+y^2-2yz+z^2+z^2-2xz+x^2}=\frac{\left(x+y+z\right).\left(x^2+y^2+z^2-xy-yz-zx\right)}{2.\left(x^2+y^2+z^2-xy-yz-zx\right)}=\frac{x+y+z}{2}\)
p/s: áp dụng 7 hàng đẳng thức là làm đc =)
ĐKXĐ :
\(x^2-4\ne0\)
=> \((x-4)\left(x+4\right)\ne0\)
=> \(\hept{\begin{cases}x-4\ne0\\x+4\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne4\\x\ne-4\end{cases}}}\)
Để \(B=\frac{2018}{x^2-4}\)xác định
thì \(x^2-4\ne0\)
\(\Rightarrow x^2\ne4\)
\(\Rightarrow x\ne\pm2\)
Vậy với \(x\ne\pm2\)thì \(B=\frac{2018}{x^2-4}\)xác định