cho hai số thực x,y thỏa mãn x+y≤4.Tìm giá trị nhỏ nhất của biểu thức
P=\(\frac{2}{X^2+Y^2}\)\(+\frac{35}{XY}\)\(+2XY\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^5-x^4+3x^3+3x^2-x+1=0\)
\(\Leftrightarrow x^5+x^4-2x^4-2x^3+5x^3+5x^2-2x^2-2x+x+1=0\)
\(\Leftrightarrow x^4\left(x+1\right)-2x^3\left(x+1\right)+5x^2\left(x+1\right)-2x\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^4-2x^3+5x^2-2x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x^4-2x^3+5x^2-2x+1=0\left(#\right)\end{cases}}\)
\(\Leftrightarrow x=-1\)(vì biểu thức # vô nghiệm) (cái này bạn tự cm)
vậy....
Cây nhà lá vườn
Đen như củ tam thất
Khi vui thì khóc,khi buồn lại cười
Tài hèn đức mọn
Hổ phụ sinh hổ tử
Đi guốc trong bụng
Thi đua là yêu nước,yêu nước phải thi đua
Chúc bạn hok tốt :33
Goi số cần tìm là abc
Theo đề bài: a+b+c=14 (*)
Ta có
abc=100.a+10.b+c=(98a+7b)+(2a+2b+2c)+b-c=(98a+7b)+2.(a+b+c)+b-c=98a+7b+2.14+b-c chia hết cho 7
Ta thấy 98a+7b+28 chia hết cho 7 => b-c chia hết cho 7
+ Nếu b=c xảy ra các trường hợp b=c=3 hoặc b=c=4 hoặc b=c=5 hoặc b=c=6
+ Nếu b>c xảy ra các trường hợp b=7; c=0 hoặc b=8; c=1 hoặc b=9; c=2
+ Nếu b<c xảy ra các trường hợp b=0; c=7 hoặc b=1; c=8 hoặc b=2; c=9
Thay các trường hợp của b và c vào (*) để tìm a. Bạn tự làm nốt nhé
\(A=\frac{2005}{2007}=1-\frac{2}{2007};B=\frac{2007}{2009}=1-\frac{2}{2009}.\)
\(\frac{1}{2007}>\frac{1}{2009}\Rightarrow1-\frac{2}{2007}< 1-\frac{2}{2009}\Rightarrow A< B\)
Tổng 5 số là
5x135=690
Tổng 3 số đầu là
3x127=381
Tổng 3 số cuối là
3x148=444
Số đứng giữa là
(381+444)-690=135
138 là trung bình cộng của 5 số, nên tổng 5 số là: 138 x 5 = 690.
Tổng của ba số đầu tiên là: 127 x 3 = 381.
Tổng của ba số cuối cùng là: 148 x 3 = 444.
Tổng của hai số đầu tiên là: 690 - 444 = 246.
Số ở giữa là số đứng thứ ba, nên số ở giữa là: 381 - 246 = 135.
bài tán này là như vậy