(5x+1)^2=36/49 x-(2/9)^3=(2/3)^6
(8x)^2x+1=5^2x+1 x-(2,5)^2+(y-1/10)^2≤0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
\(x.x\) = 1 + 3 + 5 +7 + 9 + ...+ 2499
xét vế trái ta có:
VT = 1 + 3 + 5 +7 + 9 + ... + 2499
Xét dãy số 1; 3; 5; 7; 9;...;2499
Dãy số trên là dãy số cách đều với khoảng cách là: 3 - 1 = 2
Số số hạng của dãy số trên là: (2499 - 1) : 2 + 1 = 1250
Tổng các số hạng trên là: (2499 + 1) x 1250 : 2 = 1562500
Khi đó ta có: \(x^2\) = 1562500
\(x^2\) = (1250)2
\(\left[{}\begin{matrix}x=-12500\\x=12500\end{matrix}\right.\)
Vậy \(x\) \(\in\) { -12500; 12500}
a) Ta có:
`84 = 2^2 . 3 . 7`
`108 = 2^2 . 3^3`
`=> UCLN(84;108) = 2^2 . 3 = 12`
`=> UC(84;108) = Ư(12) = {-12;-6;-4;-3;-2;-1;1;2;3;4;6;12}`
Do `35 vdots x; 105 vdots x`
`=> x in UC{35;105)`
Mà `105 vdots 35`
`=> x in Ư(35) = {1;5;7;35}`
Mà `x > 5 -> x in {7;35}`
Vậy ...
`b) x vdots 10; x vdots 15`
`=> x in BC(10;15)`
Ta có:
`10 = 2 . 5`
`15 = 3.5`
`=> BCN``N(10;15) = 2.3.5 = 30`
`=> x in B(30) = {0;30;60;90;120;...}`
Mà `x < 100 -> x in {0;30;60;90}`
Lời giải:
a. $140=2^2.5.7$
$168=2^3.3.7$
$\Rightarrow ƯCLN(140, 168) = 2^2.7=28$
b.
$525=3.5^2.7$
$375=3.5^3$
$\Rightarrow ƯCLN(525, 375)=3.5^2=75$
`Ư(16) = {-16;-8;-4;-2;-1;1;2;4;8;16}`
`Ư(24) = {-24;-12;-8;-6;-4;-3;-2;-1;1;2;3;4;6;8;12;24}`
`=> ƯC(16;24) = {-8;-4;-2;-1;1;2;4;8}`
`Ư(30) = {-30;-15;-10;-6;-5;-3-2;-1;1;2;3;5;6;10;15;30}`
`Ư(45) = {-45;-15;-9;-5;-3;-1;1;3;5;9;15;45}`
`=> ƯC(30;45) = {-15;-5;-3;-1;1;3;5;15}`
\(A=2+2^2+2^3+...+2^{2023}\)
\(2A=2^2+2^3+2^4+...+2^{2024}\)
\(2A-A=\left(2^2+2^3+2^4+...+2^{2024}\right)-\left(2+2^2+2^3+...+2^{2023}\right)\)
\(A=2^{2024}-2\)
\(B=3^0+3^1+3^2+...+3^{100}\)
\(3B=3^1+3^2+3^3+...+3^{101}\)
\(3B-B=\left(3^1+3^2+3^3+...+3^{101}\right)-\left(3^0+3^1+3^2+...+3^{100}\right)\)
\(2B=3^{101}-3\)
\(B=\dfrac{3^{101}-3}{2}\)
\(C=4^0+4^2+...+4^{100}\)
=>\(16C=4^2+4^4+...+4^{102}\)
=>\(16C-C=4^2+4^4+...+4^{102}-4^0-4^2-...-4^{100}\)
=>\(15C=4^{102}-1\)
=>\(C=\dfrac{4^{102}-1}{15}\)
\(D=1+5^2+5^4+...+5^{2022}\)
=>\(25D=5^2+5^4+...+5^{2024}\)
=>\(25D-D=5^2+5^4+...+5^{2024}-1-5^2-...-5^{2022}\)
=>\(24D=5^{2024}-1\)
=>\(D=\dfrac{5^{2024}-1}{24}\)
\(S=a^0+a^1+...+a^n\)
=>\(S\cdot a=a^1+a^2+...+a^{n+1}\)
=>\(S\cdot a-S=a^1+a^2+...+a^{n+1}-a^0-a^1-...-a^n\)
=>\(S\left(a-1\right)=a^{n+1}-1\)
=>\(S=\dfrac{a^{n+1}-1}{a-1}\)
Chu vi mảnh vườn hình chữ nhật là:
`(8+16) \times 2 = 48 (m)`
Số cây mà Thu trồng là:
`48 : 1 = 48 (` cây `)`
Số tiền mà bạn Thu phải bỏ ra trồng cây là:
`50000 \times 48=2 400 000 (` đồng `)`
Vậy: Số tiền mà bạn Thu phải bỏ ra trồng cây là: `2 400 000` đồng
a: 3 số tự nhiên liên tiếp sẽ luôn có dạng là 3k;3k+1;3k+2(với k là số tự nhiên)
mà \(3k⋮3\)
nên trong 3 số tự nhiên liên tiếp sẽ có một số chia hết cho 3
b: Gọi ba số tự nhiên liên tiếp là a;a+1;a+2
Tổng của ba số tự nhiên liên tiếp là:
\(a+a+1+a+2=3a+3=3\left(a+1\right)⋮3\)
=>Tổng của ba số tự nhiên liên tiếp thì chia hết cho 3
c: Tích của ba số tự nhiên liên tiếp sẽ chia hết cho 3!=6
mà \(6⋮3;6⋮2\)
nên tích của ba số tự nhiên liên tiếp sẽ chia hết cho cả 3 và 2
\(\left(5x+1\right)^2=\dfrac{36}{49}\)
=>\(\left[{}\begin{matrix}5x+1=\dfrac{6}{7}\\5x+1=-\dfrac{6}{7}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=\dfrac{6}{7}-1=-\dfrac{1}{7}\\5x=-\dfrac{6}{7}-1=-\dfrac{13}{7}\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=-\dfrac{1}{7}:5=-\dfrac{1}{35}\\x=-\dfrac{13}{7}:5=-\dfrac{13}{35}\end{matrix}\right.\)
\(\left(8x\right)^{2x+1}=5^{2x+1}\)
=>8x=5
=>\(x=\dfrac{5}{8}\)
\(x-\left(\dfrac{2}{9}\right)^3=\left(\dfrac{2}{3}\right)^6\)
=>\(x-\dfrac{8}{729}=\dfrac{64}{729}\)
=>\(x=\dfrac{64}{729}+\dfrac{8}{729}=\dfrac{72}{729}=\dfrac{8}{81}\)
Sửa đề: \(\left(x-2,5\right)^2+\left(y-\dfrac{1}{10}\right)^2< =0\)
mà \(\left(x-2,5\right)^2+\left(y-\dfrac{1}{10}\right)^2>=0\forall x,y\)
nên \(\left\{{}\begin{matrix}x-2,5=0\\y-\dfrac{1}{10}=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=2,5\\y=\dfrac{1}{10}\end{matrix}\right.\)
`(5x + 1)^2 = 36/49`
TH1:
`(5x + 1)^2 = (6/7)^2`
`=> 5x + 1 = 6/7`
`=> 5x = 6/7 - 1`
`=> 5x = -1/7`
`=> x = -1/7 : 5`
`=> x = -1/35`
TH2:
`(5x + 1)^2 = (-6/7)^2`
`=> 5x + 1 = -6/7`
`=> 5x = -6/7 - 1`
`=> 5x = -13/7`
`=> x = - 13/7 :5`
`=> x = -13/35`
Vậy `x = -1/35 ; x = -13/35`
`b)(x - 2/9)^3 = (2/3)^6
`=> (x - 2/9)^3 = (8/27)^3`
`=> x - 2/9 = 8/27`
`=> x = 8/27 + 2/9`
`=> x = 14/27`
Vậy `x = 14/27`
`c)(8x)^(2x + 1) = 5^(2x + 1)`
`=> 8x = 5`
`=> x = 5 : 8`
`=> x = 5/8`
Vậy `x = 5/8`
`d)(x - 2,5)^2 + (y - 1/10)^2 ≥0`
TH1:
`x - 2.5 = 0`
=> x = 0 + 2,5`
`=> x = 2,5 = 5/2`
TH2:
`y - 1/10 = 0`
`=> y = 0 + 1/10`
`=> y = 1/10`
Vậy `x = 5/2 ` ; `y = 1/10`