K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 10 2019

cách giải cho bạn nếu bạn cần

TH1: \(x\ne0\)

bình phương 2 vế ta có:

\(x=x^2\)

\(x:x=x\)

\(\Rightarrow1=x\)

TH2:\(x=0\)

30 tháng 10 2019

x = 0 

Hok tốt ...

30 tháng 10 2019

Ta có : \(B=\frac{x+y}{y}.\frac{z+y}{z}=\frac{x+z}{x}=\frac{\left(x+y\right)\left(z+y\right)\left(x+z\right)}{xyz}\)

Từ \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

\(\Rightarrow\frac{y+z-x}{x}+2=\frac{z+x-y}{y}+2=\frac{x+y-z}{z}+2\)

\(\Rightarrow\frac{x+y+z}{x}=\frac{x+y+z}{y}=\frac{x+y+z}{z}\)

Nếu x + y + z = 0

=> x + y = - z

=> z + y = - x

=> z + x = - y

Khi đó : B = \(\frac{\left(-x\right)\left(-y\right)\left(-z\right)}{xyz}=-\frac{xyz}{xyz}=-1\)

Nếu x + y + z \(\ne\)0

=> \(\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\Rightarrow x=y=z\)

Khi đó \(B=\frac{\left(x+y\right)^3}{x^3}=\frac{\left(2x\right)^3}{x^3}=\frac{2^3.x^3}{x^3}=8\)

Vậy nếu x + y + z = 0 B = - 1

       nếu x + y + z  \(\ne\)0 thì B = 8 

22 tháng 8 2020

chỉ có lm thì mới có ăn

19 tháng 9 2021

hỏi khó thế anh zai

30 tháng 10 2019

bạn cần nói rõ đề hơn nhé

30 tháng 10 2019

3 dấu giá trị tuyệt đối là sao

16 tháng 4 2022

còn=)) kb đi:)

 

30 tháng 10 2019

Đặt \(\frac{x}{z}=\frac{z}{y}=k\)

\(\Rightarrow\hept{\begin{cases}x=zk\\z=yk\end{cases}}\)

Khi đó : \(\frac{x^2+z^2}{y^2+z^2}=\frac{\left(zk\right)^2+z^2}{y^2+\left(yk\right)^2}=\frac{z^2\left(k^2+1\right)}{y^2\left(k^2+1\right)}=\frac{z^2}{y^2}=\frac{\left(y.k\right)^2}{y^2}=k^2\)

\(\frac{x}{y}=\frac{y.k^2}{y}=k^2\)

=> \(\frac{x^2+z^2}{y^2+z^2}=\frac{x}{y}\left(\text{đpcm}\right)\)

30 tháng 10 2019

\(\frac{x}{z}=\frac{z}{y}\)

cmr: \(\left(\frac{x^2+z^2}{y^2+z^2}\right)=\frac{x}{y}\)

\(\frac{x}{z}=\frac{z}{y}\Rightarrow\left(\frac{x}{z}\right)^2=\left(\frac{z}{y}\right)^2\)

áp dụng t/c dãy tỉ số = nhau

\(\left(1\right)\left(\frac{x}{z}\right)^2=\left(\frac{z}{y}\right)^2=\frac{\left(x^2+z^2\right)}{\left(z^2+y^2\right)}\)

vì \(\left(2\right)\frac{x}{z}=\frac{z}{y}\Rightarrow\frac{x}{y}=\frac{z}{z}\)

từ (1) và (2) =>\(\left(\frac{x^2+z^2}{y^2+z^2}\right)=\frac{x}{y}\)

30 tháng 10 2019

\(26\frac{1}{5}-44\frac{1}{5}=26+\frac{1}{5}-\left(44+\frac{1}{5}\right)\)

\(=26+\frac{1}{5}-44-\frac{1}{5}=26-44=-18\)

30 tháng 10 2019

\(=\frac{131}{5}-\frac{221}{5}\)

\(=-\frac{90}{5}\)

\(=-18\)