K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 1 2019

a,\(a^2\left(a+1\right)+2a\left(a+1\right)=\left(a^2+2a\right)\left(a+1\right)\)

\(=a\left(a+2\right)\left(a+1\right)⋮3⋮2\)

                                               \(⋮6\left(ĐPCM\right)\)

b,\(a\left(2a-3\right)-2a\left(a+1\right)\)

\(=2a^2-3a-2a^2-2a\)

\(=-5a⋮5\left(ĐPCM\right)\)

7 tháng 1 2019

\(\frac{x+14}{86}+\frac{x+15}{85}+\frac{x+16}{84}+\frac{x+14}{83}+\frac{x+116}{4}=0\)

\(\frac{x+14}{86}+1+\frac{x+15}{85}+1+\frac{x+16}{84}+1+\frac{x+14}{83}+1+\frac{x+116}{4}-4=0\)

\(\frac{x+14+86}{86}+\frac{x+15+85}{85}+\frac{x+16+84}{84}+\frac{x+14+83}{83}+\frac{x+116-16}{4}=0\)

\(\frac{x+100}{86}+\frac{x+100}{85}+\frac{x+100}{84}+\frac{x+100}{83}+\frac{x+100}{4}=0\)

\(\left(x+100\right)\left(\frac{1}{86}+\frac{1}{85}+\frac{1}{84}+\frac{1}{83}+\frac{1}{4}\right)=0\)

Vì \(\left(\frac{1}{86}+\frac{1}{85}+\frac{1}{84}+\frac{1}{83}+\frac{1}{4}\right)\ne0\)

\(\Rightarrow x+100=0\)

\(\Rightarrow x=-100\)

Vậy........

7 tháng 1 2019

(Hình bạn tự vẽ nhé)

a)

Tứ giác AHCE có:

AD = DC

HD = DE

=> AHCE là hình bình hành

mà ^AHC = 90o => AHCE là hình chữ nhật.

b)

AHCE là hình chữ nhật => HE = AC

mà AC = AB (tam giác ABC cân ở A)

=> HE = AB

c)

\(\Delta ABC:CF\perp AD,AH\perp BC\)

mà CF giao AH tại G => G là trực tâm => \(BD\perp AC\)(1)

Tứ giác AEDF có:

AE = DF ( = 1/2 BC - tự c/m đường trung bình nhé)

AF = ED ( = 1/2 AB - cmtt)

=> Tứ giác AEDF là hình thoi => \(AD\perp EF\)(2 đường chéo vuông góc với nhau) (2)

Từ (1) và (2) => EF//BD (đpcm)

Chúc bạn học tốt!!!

cách 2 

\(Pain=\left(\sqrt{2x+1}-\sqrt{\frac{16}{2x+1}}\right)^2\ge0\)

                \(=2x+1-\frac{16}{2x+1}-2\sqrt{\frac{\left(2x+1\right)16}{\left(2x+1\right)}}\ge0\)

                    \(=\frac{\left(2x+1\right)^2+16}{2x+1}\ge8\)

\(a=\frac{2x+1}{4x^2+4x+17}=\frac{2x+1}{\left(2x+1\right)^2+16}\ge\frac{1}{8}\)

\(4x^2A+4xa+17a=2x+1.\)

\(4x^2A+2x\left(2a-1\right)+\left(17a-1\right)=0\)

để pt có nghiệm thì  \(\Delta`=\left(2a-1\right)^2-4a\left(17a-1\right)\ge0\)

\(\Delta`=\left(1-8a\right)\left(8a+1\right)\ge0\)

\(1-8a\ge0\Leftrightarrow a\le\frac{1}{8}\) " max

\(8a+1\ge0\Leftrightarrow a\ge-\frac{1}{8}\) Min 

\(\frac{1}{8}\ge a\ge-\frac{1}{8}\)

tìm hộ lỗi sai :))  , chia sẻ luôn cách tìm min max pt dạng như trên

công thức tổng quát nè

\(M=\frac{ax^2+bx+C}{ex^2+fx+g}\)

\(ex^2M+fxM+gM=ax^2+bx+c\)

\(x^2\left(e-a\right)+x\left(fm-b\right)+\left(gm-c\right)=0\)

\(\Delta=\left(fm-b\right)^2-4\left(gm-c\right)\left(e-a\right)\ge0\)

pt bậc 2 ẩn M , tính denta ra nghiệm rồi phân thích thành nhân tử là ok

7 tháng 1 2019

\(x^3-3x^2-6x+8\)

\(=\left(x^3+8\right)-\left(3x^2+6x\right)\)

\(=\left(x+2\right)\left(x^2-2x+4\right)-3x\left(x+2\right)\)

\(=\left(x+2\right)\left(x^2-2x+4-3x\right)\)

\(=\left(x+2\right)\left(x^2-5x+4\right)\)

\(=\left(x+2\right)\left(x^2-x-4x+4\right)\)

\(=\left(x+2\right)\left[x\left(x-1\right)-4\left(x-1\right)\right]\)

\(=\left(x+2\right)\left(x-1\right)\left(x-4\right)\)

Thiếu đề nha bạn!

_________________

--------------------------------------

^_^