Cho tam giác ABC có AC > AB . Trên CA lấy E sao cho CE = AB . Các đường trung trực BE và AC cắt nhau O . CMR :
a) tam giác AOB = tam giác COE
b) OA là phân giác BAC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét \(\Delta\)OBC và \(\Delta\)ODA có:
OC = OA ( gt)
^BOC = ^DOA
OB = OD
=> \(\Delta\)OBC = \(\Delta\)ODA ( c.g.c) (1)
b) Có: OB = OD ; OA = OC ( gt)
=> OB - OA = OD - OC
=> AB = CD ( 2)
Từ (1) => ^OBC = ^ODA => ^ABK = ^CDK ( 3)
Từ (1) => ^OCB = ^OAD => ^BAK = ^DCK (4)
Từ (2) ; (3) ; (4) => \(\Delta\)AKB = \(\Delta\)CKD => AK = CK
Xét \(\Delta\)OAK và \(\Delta\)OCK có:
OA = OC
^OAK = ^OCK
AK = CK
=> \(\Delta\)OAK = \(\Delta\)OCK
=> ^AOK = ^COK
=> OK là phân giác của ^xOy.
\(\left(\frac{1}{3}-2x\right)^{2018}+\left(3y-x\right)^{2020}\le0\)(1)
Vì \(\left(\frac{1}{3}-2x\right)^{2018}\ge0\forall x\); \(\left(3y-x\right)^{2020}\ge0\forall x,y\)
\(\Rightarrow\left(\frac{1}{3}-2x\right)^{2018}+\left(3y-x\right)^{2020}\ge0\forall x,y\)(2)
Từ (1), (2) \(\Rightarrow\left(\frac{1}{3}-2x\right)^{2018}+\left(3y-x\right)^{2020}=0\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{3}-2x=0\\3y-x=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{6}\\y=\frac{1}{18}\end{cases}}\)
\(\Rightarrow\frac{1}{x}+\frac{1}{y}=6+18=24\left(đpcm\right)\)
Theo đề bài : số lít dầu hỏa và cân nặng của dầu hỏa là ai đại lượng tỉ lệ thuận.
Gọi x là số lít dầu hỏa có từ 19 kg dầu hỏa.
\(\frac{21}{16,8}=\frac{x}{19}\Rightarrow x=\frac{21.19}{16,8}=23,75\)
Mà 23,75 > 23. Do đó 19 kg dầu hỏa không thể hết vào can 23 l.
#Panda
Trl :
Coi x là số lít dầu hỏa từ 19kg dầu hỏa .
Cùng một loại dầu , khối lượng tỉ lệ thuận với thể tích , nếu thể tích của 19 kg dầu hỏa là x thì :
\(\frac{16,8}{21}\)\(=\frac{19}{x}\)
\(\Rightarrow x=\frac{19.21}{16,8}=23,75\)
Mà : 23,75 > 23
Do đó : 19kg dầu hỏa không thể chứa được hết vào can 23l
a) Xét t/giác AMB và t/giác EMC
có MA = ME (gt)
BM = MC (gt)
\(\widehat{AMB}=\widehat{EMC}\)(đối đỉnh)
=> t/giác AMB = t/giác EMC (c.g.c)
b) Do t/giác AMB = t/giác EMC (cmt)
=> \(\widehat{BAM}=\widehat{MEC}\)(2 góc t/ứng)
mà 2 góc này ở vị trí so le trong
=> AB // CE
=> \(\widehat{A}+\widehat{C}=180^0\) (trong cùng phía)
mà \(\widehat{A}=90^0\) => \(\widehat{C}=90^0\) => AC \(\perp\)CE
c) Xét t/giác ABC vuông tại A có AM là đường trung tuyến
=> AM = BM = MC = 1/2BC
=> BC = 2AM
HD C2: CM t/giác ABC = t/giác CEA (C.g.c)
=> BC = EA (2 cạnh t/ứng
=> 1/2BC = 1/2EM
=> 1/2BC = MA (vì EM = MA = 1/2EM)
=> AM = 2BC