Tìm GTLN
10x-x^2+2
Mấy anh chị giúp em vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
A = 8.(32 + 1)(34 + 1)(38 + 1)(316 + 1)
A = (32 - 1)(32 + 1)(34+ 1)(38 +1)(316 + 1)
A = (34 - 1)(34 + 1)(38+ 1)(316 + 1)
A = (38 - 1)(38 + 1)(316 + 1)
A = (316 - 1)(316 +1)
A = (316)2 - 12
A = 332 - 1
1: \(A=8\left(3^2+1\right)\left(3^4+1\right)\cdot...\cdot\left(3^{16}+1\right)\)
\(=\left(3^2-1\right)\left(3^2+1\right)\cdot\left(3^4+1\right)\left(3^8+1\right)\cdot\left(3^{16}+1\right)\)
\(=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\left(3^8-1\right)\cdot\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=\left(3^{16}-1\right)\left(3^{16}+1\right)=3^{32}-1\)
2: \(B=\left(1-3\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=-\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=-\left(3^4-1\right)\left(3^4+1\right)\cdot\left(3^8+1\right)\left(3^{16}+1\right)\)
\(=-\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)=-\left(3^{16}-1\right)\left(3^{16}+1\right)\)
\(=-\left(3^{32}-1\right)=1-3^{32}\)
3: \(C=24\left(5^2+1\right)\left(5^4+1\right)\cdot...\cdot\left(5^{128}+1\right)+\left(5^{256}-1\right)\)
\(=\left(5^2-1\right)\left(5^2+1\right)\cdot\left(5^4+1\right)\left(5^{128}+1\right)+\left(5^{256}-1\right)\)
\(=\left(5^4-1\right)\cdot\left(5^4+1\right)\cdot...\cdot\left(5^{128}+1\right)+\left(5^{256}-1\right)\)
\(=\left(5^8-1\right)\left(5^8+1\right)\cdot...\cdot\left(5^{128}+1\right)+\left(5^{256}-1\right)\)
\(=\left(5^{16}-1\right)\left(5^{16}+1\right)\cdot...\cdot\left(5^{128}+1\right)+5^{256}-1\)
\(=\left(5^{32}-1\right)\left(5^{32}+1\right)\left(5^{64}+1\right)\left(5^{128}+1\right)+5^{256}-1\)
\(=\left(5^{64}-1\right)\left(5^{64}+1\right)\left(5^{128}+1\right)+5^{256}-1\)
\(=\left(5^{128}-1\right)\left(5^{128}+1\right)+5^{256}-1=2\left(5^{256}-1\right)\)
Bài 1:
\(a.A=23,12+45,56+76,88+54,44\\ =\left(23,12+76,88\right)+\left(45,56+54,44\right)\\ =100+100\\ =200\\ b.201,5\cdot9+201,5\cdot2-201,5\\ =201,5\cdot\left(9+2-1\right)\\ =201,5\cdot10\\ =2015\\ c.C=\dfrac{1}{2}:0,5+\dfrac{1}{4}:0,25-\dfrac{1}{8}:0,125+2014\\ =\dfrac{1}{2}\cdot2+\dfrac{1}{4}\cdot4+\dfrac{1}{8}\cdot8+2014\\ =1+1+1+2014\\ =2017\\ d.D=2\dfrac{2}{3}+\dfrac{5}{9}+\dfrac{4}{9}:\left(30\%-\dfrac{1}{10}\right)-\dfrac{2}{9}\\ =\dfrac{8}{3}+\left(\dfrac{5}{9}-\dfrac{2}{9}\right)+\dfrac{4}{9}:\left(\dfrac{3}{10}-\dfrac{1}{10}\right)\\ =\dfrac{8}{3}+\dfrac{1}{3}+\dfrac{4}{9}:\dfrac{1}{5}\\ =\dfrac{9}{3}+\dfrac{4}{45}\\ =3+\dfrac{4}{9}\cdot5=3+\dfrac{20}{9}=\dfrac{47}{9}\)
Bài 2:
a: y+2=2017
=>y=2017-2=2015
b: \(3y-2\dfrac{2}{7}=3\dfrac{5}{7}\)
=>\(3y=3+\dfrac{5}{7}+2+\dfrac{2}{7}=6\)
=>\(y=\dfrac{6}{3}=2\)
c: \(1\dfrac{3}{4}-\dfrac{3}{4}y=75\%\)
=>\(\dfrac{7}{4}-\dfrac{3}{4}y=\dfrac{3}{4}\)
=>7-3y=3
=>3y=7-3=4
=>\(y=\dfrac{4}{3}\)
d: \(\dfrac{2}{3}+\dfrac{1}{3}y+3\dfrac{2}{3}y=\dfrac{8}{3}\)
=>\(4y=\dfrac{8}{3}-\dfrac{2}{3}=\dfrac{6}{3}=2\)
=>\(y=\dfrac{2}{4}=\dfrac{1}{2}\)
e: \(y-14=25\)
=>y=25+14=39
f: \(5y-25=35\)
=>5y=25+35=60
=>y=60/5=12
g: 9,34-y=1,28
=>y=9,34-1,28=8,06
h: y:1,2=2,4
=>\(y=2,4\cdot1,2=2,88\)
i: 2,4:y=0,2
=>y=2,4:0,2=12
k: (y+1)+(y+3)=24
=>y+1+y+3=24
=>2y=20
=>y=10
Bài 6:
\(\dfrac{9^5.9^7}{3^{22}}\) = \(\dfrac{3^{15}.3^{21}}{3^{22}}\) = \(\dfrac{3^{36}}{3^{22}}\) = 314
Bài 7:
\(\dfrac{9^{16}.8^{11}}{6^{33}}\) = \(\dfrac{3^{32}.2^{33}}{3^{33}.2^{33}}\) = \(\dfrac{1}{3}\)
a; (\(\dfrac{1}{x}\) - 5)(\(\dfrac{1}{x}\) + 5)
= (\(\dfrac{1}{x}\))2 - 52
= \(\dfrac{1}{x^2}\) - 25
b; (\(\dfrac{x}{3}\) - \(\dfrac{y}{4}\))(\(\dfrac{x}{3}\) + \(\dfrac{y}{4}\))
= \(\left(\dfrac{x}{3}\right)^2\) - \(\left(\dfrac{y}{4}\right)^2\)
= \(\dfrac{x^2}{9}\) - \(\dfrac{y^2}{16}\)
d; (\(\dfrac{x}{y}\) - \(\dfrac{2}{3}\) (\(\dfrac{x}{y}\)+\(\dfrac{2}{3}\))
= (\(\dfrac{x}{y}\))2 - (\(\dfrac{2}{3}\))2
= \(\dfrac{x^2}{y^2}\) - \(\dfrac{4}{9}\)
e; (2\(x\) - \(\dfrac{2}{3}\))(\(\dfrac{2}{3}\) + 2\(x\))
= (2\(x\))2 - (\(\dfrac{2}{3}\))2
= 4\(x^2\) - \(\dfrac{4}{9}\)
Đổi:\(\dfrac{39}{6}=\dfrac{13}{2}\)
Chiều rộng mảnh đất là:
\(\dfrac{13}{2}\times\dfrac{1}{3}=\dfrac{13}{6}\left(cm\right)\)
Chu vi mảnh đất là:
\(2\times\left(\dfrac{13}{6}+\dfrac{13}{2}\right)=\dfrac{52}{3}\left(m\right)\)
Diện tích mảnh đất là:
\(\dfrac{13}{6}\times\dfrac{13}{2}=\dfrac{169}{12}\left(m^2\right)\)
Đ/S:...
\(S=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{200}}\)
\(\Rightarrow2S=2\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{200}}\right)\)
\(\Rightarrow2S=1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{199}}\)
\(\Rightarrow2S-S=\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{199}}\right)-\left(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{200}}\right)\)
\(\Rightarrow S=1-\dfrac{1}{2^{100}}< 1\)
\(\Rightarrow S< 1\)
Vậy \(S< 1\)
\(1.2\left(x+2\right)^2< 2x\left(x+2\right)+4\\ \Leftrightarrow2\left(x^2+4x+4\right)-2x\left(x+2\right)-4< 0\\ \Leftrightarrow2x^2+8x+4-2x^2-4x-4< 0\\ \Leftrightarrow4x< 0\\ \Leftrightarrow x< 0\\ 2.\left(x-1\right)^2+x^2< \left(x+1\right)^2+\left(x+2\right)^2\\ \Leftrightarrow x^2-2x+1+x^2< x^2+2x+1+x^2+4x+4\\ \Leftrightarrow2x^2-2x+1-2x^2-6x-5< 0\\ \Leftrightarrow-8x-4< 0\\ \Leftrightarrow8x>-4\\ \Leftrightarrow x>-\dfrac{1}{2}\\ 3.\left(x^2+1\right)\left(x-6\right)< \left(x-2\right)^3\\ \Leftrightarrow x^3-6x^2+x-6< x^3-6x^2+12x-8\\ \Leftrightarrow x-6< 12x-8\\ \Leftrightarrow12x-x>-6+8\\ \Leftrightarrow11x>2\\ \Leftrightarrow x>\dfrac{2}{11}\)
\(10x-x^2+2\\ =\left(-x^2+10x-25\right)+27\\ =-\left(x^2-10x+25\right)+27\\ =-\left(x-5\right)^2+27\)
Ta có: \(-\left(x-5\right)^2\le0\forall x=>-\left(x-5\right)^2+27\le27\forall x\)
Dấu "=" xảy ra: `x-5=0<=>x=5`