K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 Bài 3:

a: \(2^x+2^{x+1}+...+2^{x+100}=2^{101}-1\)

=>\(2^x\left(1+2+...+2^{100}\right)=2^{101}-1\)

Đặt \(A=1+2+...+2^{100}\)

=>\(2A=2+2^2+...+2^{101}\)

=>\(2A-A=2+2^2+...+2^{101}-1-2-...-2^{100}\)

=>\(A=2^{101}-1\)

\(2^x\left(1+2+...+2^{100}\right)=2^{101}-1\)

=>\(2^x\left(2^{101}-1\right)=2^{101}-1\)

=>\(2^x=1=2^0\)

=>x=0

b: p là số nguyên tố lớn hơn 3 nên \(\left\{{}\begin{matrix}p⋮̸2\\p⋮̸3\end{matrix}\right.\)

p không chia hết cho 3 nên p=3k+1 hoặc p=3k+2

TH3: p=3k+1

\(\left(p-1\right)\left(p+1\right)\)

\(=\left(3k+1-1\right)\left(3k+1+1\right)\)

\(=3k\left(3k+2\right)⋮3\)(3)

TH2: p=3k+2

\(\left(p-1\right)\left(p+1\right)=\left(3k+2-1\right)\left(3k+2+1\right)\)

\(=\left(3k+1\right)\left(3k+3\right)=3\left(k+1\right)\left(3k+1\right)⋮3\)(2)

Từ (2),(3) suy ra \(\left(p-1\right)\left(p+1\right)⋮3\)

p không chia hết cho 2 nên p=2k+1

\(\left(p-1\right)\left(p+1\right)=\left(2k+1-1\right)\left(2k+1+1\right)\)

\(=2k\left(2k+2\right)=4k\left(k+1\right)\)

Vì k;k+1 là hai số nguyên liên tiếp

nên \(k\left(k+1\right)⋮2\)

=>\(4k\left(k+1\right)⋮4\cdot2\)

=>\(4k\left(k+1\right)⋮8\)

=>\(\left(p-1\right)\left(p+1\right)⋮8\)

mà \(\left(p-1\right)\left(p+1\right)⋮3\)

và ƯCLN(3;8)=1

nên \(\left(p-1\right)\left(p+1\right)⋮3\cdot8=24\)

14 tháng 11

Đêm trăng sáng giữa rừng cây,
Gió nhẹ ru, tiếng hát ngây ngô.

14 tháng 11

lục bát 

 

14 tháng 11

mình sẽ tặng cho các bạn ảnh này nhớ gửi email kèm với câu trả lời nhé

14 tháng 11

bạn muốn viết về gì

 

về kind of music í ạ phần music and art íi aa

 

14 tháng 11

147 

14 tháng 11

Có 204 quốc gia

14 tháng 11

-Quốc gia Việt Nam đẹp hơn quốc gia Mĩ

 

a: Xét ΔKBC vuông tại K và ΔHCB vuông tại H có

BC chung

\(\widehat{KBC}=\widehat{HCB}\)

Do đó: ΔKBC=ΔHCB

=>\(\widehat{KCB}=\widehat{HBC}\)

b: ΔKBC=ΔHCB

=>KC=HB

a: Xét ΔMAB và ΔCBA có

\(\widehat{MAB}=\widehat{ABC}\)(hai góc so le trong, MA//BC)

AB chung

\(\widehat{ABM}=\widehat{BAC}\)(hai góc so le trong, MB//AC)

Do đó;ΔMAB=ΔCBA

Xét ΔABC và ΔCNA có 

\(\widehat{BAC}=\widehat{NCA}\)(hai góc so le trong, BA//CN)

AC chung

\(\widehat{BCA}=\widehat{NAC}\)(hai góc so le trong, AN//BC)

Do đó: ΔABC=ΔCNA

b: ΔMAB=ΔCBA

=>MA=CB

ΔABC=ΔCNA

=>BC=NA

mà BC=AM

nên AM=AN

mà M,A,N thẳng hàng

nên A là trung điểm của MN

loading...

Hình 10: Xét ΔBAC có \(\widehat{CAD}\) là góc ngoài tại đỉnh A

nên \(\widehat{CAD}=\widehat{ABC}+\widehat{ACB}\)

=>\(x=63^0+45^0=108^0\)

Hình 11: Xét ΔABC có \(\widehat{ACD}\) là góc ngoài tại đỉnh C

nên \(\widehat{ACD}=\widehat{CAB}+\widehat{CBA}\)

=>\(x=81^0+50^0=131^0\)

Hình 12: Xét ΔBMC có \(\widehat{AMB}\) là góc ngoài tại đỉnh M

nên \(\widehat{AMB}=\widehat{MBC}+\widehat{MCB}\)

=>\(x=38^0+48^0=86^0\)

Hình 13: Xét ΔMAB có \(\widehat{AMC}\) là góc ngoài tại đỉnh M

nên \(\widehat{AMC}=\widehat{MAB}+\widehat{MBA}\)

=>\(x+60^0=120^0\)

=>\(x=60^0\)

Hình 14: Xét ΔBAC có \(\widehat{CAD}\) là góc ngoài tại đỉnh A

nên \(\widehat{CAD}=\widehat{ABC}+\widehat{ACB}\)

=>\(x+x=90^0\)

=>\(2x=90^0\)

=>\(x=45^0\)

Hình 15:

Xét ΔABC có \(\widehat{CBD}\) là góc ngoài tại đỉnh B

nên \(\widehat{CBD}=\widehat{BAC}+\widehat{BCA}\)

=>\(x+x=44^0\)

=>\(2x=44^0\)

=>\(x=22^0\)