\(\left(\sqrt{x+3}-\sqrt{x+1}\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
X^2 + 2( m+1) X - m+3 =0
ta có
( m + 1 ) + m-3 = 0
m^2 + 3m -2 = 0
m1 = \(\frac{-3\sqrt{17}}{2}\)
m2 = \(\frac{-3-\sqrt{17}}{2}\)
Mấy dạng bài như thế này bạn nên học Phương Pháp Liên Hợp nhé
Dễ thấy x=1 là nghiệm của phương trình
Thêm bớt 1 giá trị nào đó để sau khi liên hợp ta đc biểu thức có nghiệm bằng 1
\(\sqrt{2x^2+23}-5=4x-4+\sqrt{2x^2+7}-3\)
\(\Leftrightarrow\frac{2x^2+23-25
}{\sqrt{2x^2+23}+5}=4\left(x-1\right)+\frac{2x^2+7-9}{\sqrt{2x^2+7}+3}\)
\(\Leftrightarrow\frac{2\left(x-1\right)\left(x+1\right)}{\sqrt{2x^2+23}+5}=4\left(x-1\right)+\frac{2\left(x-1\right)\left(x+1\right)}{\sqrt{2x^2+7}+3}\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{2\left(x+1\right)}{\sqrt{2x^2+23}+5}-4-\frac{2\left(x+1\right)}{\sqrt{2x^2+7}+3}\right)=0\)
Dễ chứng minh biểu thức dài kia vô nghiệm (luôn <0)
Vậy nghiệm là x=1