K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAD và ΔABC có

AB chung

BD=AC

AD=BC

Do đó: ΔBAD=ΔABC

=>\(\widehat{ABD}=\widehat{BAC}\)

=>\(\widehat{TAB}=\widehat{TBA}\)

=>ΔTAB cân tại T

=>TA=TB

b: Ta có: TA+TC=AC

TB+TD=BD

mà TA=TB và AC=BD

nên TC=TD

26 tháng 7 2024

nối t với m sao cho tm vuông góc ab 

xét tam giác AMT và tam giác BMT có

amt=bmt=90 độ

mt chung 

am=mb

suy ra hai tam giác bằng nhau 

suy ra ta=tb

CMTT ta có tam giác TDN và TCN 

suy ra TD=TC

 

26 tháng 7 2024

fighting

 

26 tháng 7 2024

A B C P Q M N I K x y

Hướng giải:

- Chứng minh được đường phân giác trong và đường phân giác ngoài của cùng 1 góc thì vuông góc với nhau

- Từ đó chững minh được APBQ và AMCN là hình chữ nhật.

- Gọi I là giao của PQ với AB; K là giao của MN với AC => I là trung điểm của AB và K là trung điểm của AC (trong HCN 2 đường chéo cắt nhau tại trung điểm mỗi đường)

- Ta  chứng minh được \(\widehat{QNy}=\widehat{BCy}\) Hai góc này ở vị trí đồng vị

=> MN//BC

- Chứng minh tương tự ta cũng có PQ//BC

- Xét tg ABC có PQ đi qua trung điểm AB và PQ//BC => PQ đi qua trung điểm K của AC (Trong tg đường thẳng đi qua trung điểm của 1 cạnh và // với 1 cạnh thì đi qua trung điểm cạnh còn lại)

=> Qua điểm K có 2 đường thẳng PQ và MN cùng song song với BC nên MN trùng PQ hay P; Q; M; N thẳng hàng (Từ 1 điểm bên ngoài 1 đường thẳng cho trước chỉ dựng được duy nhất 1 đường thẳng // với đường thẳng đã cho)

26 tháng 7 2024

Ta có:\(3\left(a^2+b^2+c^2\right)=\left(a+b+c\right)^2\)

\(\Leftrightarrow3a^2+3b^2+3c^2=a^2+b^2+c^2+2ab+2bc+2ca\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

Vì \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(c-a\right)^2\ge0\) với mọi \(a;b;c\inℝ\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) với mọi \(a;b;c\inℝ\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a-b=0\\b-c=0\\c-a=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\)

\(\Rightarrow a=b=c\)

\(\Rightarrow P=a^3+a^3+c^3-3.a.a.a\)

\(\Leftrightarrow P=3a^3-3a^3\)

\(\Leftrightarrow P=0\)

Vậy ...

 

0

\(2x^2-xy+4x-2y\)

=x(2x-y)+2(2x-y)

=(2x-y)(x+2)

25 tháng 7 2024

`x^3 + 2x^2 + x + 2 = 0`

`=> (x^3 + 2x^2) + (x + 2) = 0`

`=> x^2 (x+2) + (x+2) = 0`

`=> (x^2 + 1)(x+2) = 0`

Mà `x^2 + 1 > 0`

`=> x+ 2 = 0`

`=> x = -2`

Vậy `x = - 2`

25 tháng 7 2024

`A = 3 (x + 1)^2 - (x + 3)^2`

`= 3 (x^2+  2x + 1) - (x^2 + 6x + 9)`

`= 3x^2 + 6x + 3 - x^2 - 6x - 9`

`= (3x^2 - x^2) + (6x - 6x) + (3 - 9)`

`= 2x^2 - 6`

Như vậy `A ` vẫn phải phụ thuộc vào `x`

---------------------------

Bạn xem lại đề bài nhé

25 tháng 7 2024

`(2x - 5y)(2x + 5y)`

`= (2x)^2 - (5y)^2`

`= 4x^2 - 15y^2`

--------------------

`a^2 - b^2 = (a-b)(a+b)`

Với

`a = 2x`

`b = 5y`

26 tháng 7 2024

A B C E D

Ta có

\(S_{ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.9.12=54cm^2\)

Xét tg vuông DEC và tg vuông ABC có chung \(\widehat{C}\)

=> tg DEC đồng dạng tg ABC

\(\Rightarrow\dfrac{S_{DEC}}{S_{ABC}}=\dfrac{S_{DEC}}{54}=\left(\dfrac{CD}{AC}\right)^2=\dfrac{4}{12}=\dfrac{1}{3}\) (Hai tg đồng dạng thì tỷ số diện tích bằng bình phương tỷ số đồng dạng)

\(\Rightarrow S_{DEC}=\dfrac{54}{3}=18cm^2\)