Cho tam giác abc vuông tại A trên cạnh BC lấy điểm D sao cho BA = BD từ D kẻ đường thẳng vuông góc với BC ,cắt AC và BA lần lượt tại E và F chứng minh tam giác ABE bằng tam giác BDA qua B kẻ đường thẳng vuông góc với BE cắt FD tại G . Chứng minh BG song song với FC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(M\left(x\right)=3\left(x^2-4\right)+x^4+12\)
\(=3x^2-12+x^4+12=x^4+3x^2=x^2\left(x^2+3\right)\)
Đặt M(x)=0
=>\(x^2\left(x^2+3\right)=0\)
=>\(x^2=0\)
=>x=0
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Thể tích bể:
200 . 20 = 4000 (l) = 4 (m³)
Chiều dài của bể:
0,8 . 2 = 1,6 (m)
Chiều cao của bể:
4 : 0,8 : 1,6 = 3,125 (m) ≈ 3,1 (m)
Lời giải:
Chiều dài bể nước: $0,8\times 2=1,6$ (m)
Thể tích của bể:
$200\times 20=4000$ (lít)
Đổi $4000$ lít = $4$ m3
Chiều cao của bể:
$4:0,8:1,6=3,1$ (m)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔABD và ΔAMD có
AB=AM
\(\widehat{BAD}=\widehat{MAD}\)
AD chung
Do đó: ΔABD=ΔAMD
b: Ta có: ΔABD=ΔAMD
=>DB=DM
=>D nằm trên đường trung trực của BM(1)
Ta có: AB=AM
=>A nằm trên đường trung trực của BM(2)
Từ (1),(2) suy ra AD là đường trung trực của BM
=>AD\(\perp\)BM tại I và I là trung điểm của BM
c: Xét ΔKMP và ΔKAB có
KM=KA
\(\widehat{MKP}=\widehat{AKB}\)(hai góc đối đỉnh)
KP=KB
Do đó: ΔKMP=ΔKAB
=>\(\widehat{KMP}=\widehat{KAB}\)
=>MP//AB
a: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có
BE chung
BA=BD
Do đó: ΔBAE=ΔBDE
b: Xét ΔBFC có
FD,CA là các đường cao
FD cắt CA tại E
Do đó: E là trực tâm của ΔBFC
=>BE\(\perp\)FC
mà BE\(\perp\)BG
nên FC//BG
Ai giúp vs