K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2019

Lời giải :

a) \(x\left(x+2\right)=x\left(x+3\right)\)

\(\Leftrightarrow x\left(x+2\right)-x\left(x+3\right)=0\)

\(\Leftrightarrow x\left(x+2-x-3\right)=0\)

\(\Leftrightarrow x\cdot\left(-1\right)=0\)

\(\Leftrightarrow x=0\)

b) \(x\left(x+1\right)+x\left(x-3\right)=4x\)

\(\Leftrightarrow x\left(x+1\right)+x\left(x-3\right)-4x=0\)

\(\Leftrightarrow x\left(x+1+x-3-4\right)=0\)

\(\Leftrightarrow x\left(2x-6\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)

Vậy....

4 tháng 7 2019

a) \(x\left(x+2\right)=x\left(x+3\right)\)

\(\Leftrightarrow x\left(x+2\right)-x\left(x+3\right)=0\)

\(\Leftrightarrow x\left[\left(x+2\right)-\left(x+3\right)\right]=0\)

\(\Leftrightarrow x.\left(-1\right)=0\)

\(\Leftrightarrow x=0\)

4 tháng 7 2019

Lời giải :

\(C=\sqrt{a^2+6a+9}+\sqrt{a^2-6a+9}\)

\(C=\sqrt{\left(a+3\right)^2}+\sqrt{\left(a-3\right)^2}\)

\(C=\left|a+3\right|+\left|a-3\right|\)

p/s: bạn nhớ viết kĩ yêu cầu của đề bài nhé

4 tháng 7 2019

\(=x^3-\left(\frac{1}{2}\right)^3=x^3-\frac{1}{8}\)

4 tháng 7 2019

\(\left(x-\frac{1}{2}\right)\left(x^2+\frac{1}{2}x+\frac{1}{4}\right)\)

\(=x.\left(x^2+\frac{1}{2}x+\frac{1}{4}\right)-\frac{1}{2}.\left(x^2+\frac{1}{2}x+\frac{1}{4}\right)\)

\(=x^3+\frac{1}{2}x^2+\frac{1}{4}x-\frac{1}{2}x^2-\frac{1}{4}x-\frac{1}{8}\)

\(=x^3-\frac{1}{8}\)

Làm bằng cách hằng đẳng thức còn rắc rối hơn thà nhân lên luôn.

4 tháng 7 2019

ai nhanh mk cho đúng luôn 

4 tháng 7 2019

\(\frac{x+1}{2x-2}-\frac{x^2+3}{2x^2-2}\)

\(=\frac{x+1}{2.\left(x-1\right)}-\frac{x^2+3}{2.\left(x^2-1\right)}\)

\(=\frac{\left(x+1\right).\left(x+1\right)}{2.\left(x+1\right).\left(x-1\right)}-\frac{x^2+3}{2.\cdot\left(x+1\right).\left(x-1\right)}\)

\(=\frac{\left(x+1\right)^2}{2.\left(x+1\right)\left(x-1\right)}-\frac{x^2+3}{2.\left(x+1\right).\left(x-1\right)}\)

\(=\frac{x^2+2x+1-x^2-3}{2.\left(x+1\right).\left(x-1\right)}\)

\(=\frac{2x-2}{2.\left(x+1\right).\left(x-1\right)}\)

\(=\frac{2.\left(x-1\right)}{2.\left(x+1\right).\left(x-1\right)}\)

\(=\frac{1}{\left(x+1\right)}\)

4 tháng 7 2019

A B C M N P D O I S

Ta thấy M,P lần lượt là trung điểm của AB,BC => MP là đường trung bình trong  \(\Delta\)ABC

=> MP // AC hay MP // AD. Xét \(\Delta\)BAD có: M là trung điểm AB, MP // AD => MP đi qua trung điểm BD

Gọi MP cắt BD tại S. Khi đó S là trung điểm BD. Ta sẽ chứng minh AI đi qua S, thật vậy:

Áp dụng hệ quả ĐL Thales có: \(\frac{ON}{AM}=\frac{OP}{BM}\left(=\frac{CO}{CM}\right)\)=> ON = OP (Vì AM = BM)

Áp dụng ĐL Melelaus cho \(\Delta\)PCN và 3 điểm A,O,I có \(\frac{IP}{IC}.\frac{ON}{OP}.\frac{AC}{AN}=1\)

Thay \(\frac{ON}{OP}=1,\frac{AC}{AN}=2\), ta được \(\frac{IP}{IC}=\frac{1}{2}\). Do đó \(\frac{IC}{IB}=\frac{1}{2}\)(Vì PC=1/2BC)

Áp dụng ĐL Melelaus cho \(\Delta\)ABC và 3 điểm M,I,D có \(\frac{MA}{MB}.\frac{IC}{IB}.\frac{DA}{DC}=1\)

Thay \(\frac{MA}{MB}=1,\frac{IC}{IB}=\frac{1}{2}\)(cmt), ta được \(\frac{DA}{DC}=2\)=> C là trung điểm AD 

Xét \(\Delta\)BAD: Các trung tuyến DM, BC cắt nhau tại I => I là trọng tâm của \(\Delta\)BAD

Ta có S là trung điểm BD nên AI đi qua S. Như vậy AI,BD,MP đồng quy tại trung điểm BD (đpcm).

4 tháng 7 2019

Gọi S là giao điểm của MP và BD

Vì P là giao điểm của MS và BC

=> Tứ giác BMCS là hình bình hành

=> \(MC//BD\)

Mà M là trung điểm của AB

=> C là trung điểm của AD

CMTT S là trung điểm của BD

=> BC; DM lần lượt là trung tuyến của tam giác ABD

Mà BC giao DM tại I

=> I là trọng tâm của tam giác ABD

Mà S là trung điểm của BD

=> A;I;S thẳng hàng

=> AI;BD;MP đồng quy tại S

Vậy AI;BD;MP đồng quy tại S

3 tháng 7 2019

Đầu bài yêu cầu rút gọn pải ko bn ?

  \(\frac{x^2}{x^2-4}+\frac{1}{x-2}+\frac{1}{x+2}\)

=\(\frac{x^2+\left(x+2\right)+\left(x-2\right)}{x^2-4}\) ( bước này quy đồng nha :D )

=\(\frac{x^2+2x}{\left(x+2\right)\left(x-2\right)}\)

=\(\frac{x\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{x}{\left(x-2\right)}\)

4 tháng 7 2019

A B C D E

Trên đường thẳng AB lấy điểm E sao cho AE=AD

Xét tam giác AEC và tam giác ADC có: 

AD=AE

^DAC=^EAC ( AC là phân giác ^BAD)

AC chung

=> Tam giác AEC = tam gác ADC

=>^ADC=^AEC (1)

và EC=CD

mà DC=BC

=> EC=BC

=> Tam giác EBC cân tại C

=> ^CEB=^CBE (2) 

Mà ^AEC+^CEB =180^o (3)

Từ (1), (2) , (3) => góc ADC + góc CBE =180^o

4 tháng 7 2019

Chị ơi, mình không cminh đc \(\widehat{B}=\widehat{D}\)ạ?

4 tháng 7 2019

Do x+y=1 nên x, y không đồng thời bằng 0 

+) Nếu \(x=0\)\(\Rightarrow\)\(y=1\)\(\Rightarrow\)\(A=0^3+1^3+0^2+1^2+2015=2017\)

Tương tự với y = 0 

+) Nếu x, y khác 0, ta có : \(A=x^3+y^3+x^2+y^2+2015=\frac{x^4}{x}+\frac{y^4}{y}+x^2+y^2+2015\)

\(\ge\frac{\left(x^2+y^2\right)^2}{x+y}+x^2+y^2+2015\ge\frac{\frac{\left(x+y\right)^4}{4}}{x+y}+\frac{\left(x+y\right)^2}{2}+2015=\frac{3}{4}+2015\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=\frac{1}{2}\)

Do \(\frac{3}{4}+2015< 2017\) nên GTNN của \(A=\frac{3}{4}+2015\) khi \(x=y=\frac{1}{2}\)

3 tháng 7 2019

\(\frac{3}{2x+6}+\frac{x-2}{x^2+6x+9}\)

\(=\frac{3}{2\left(x+3\right)}+\frac{x^2}{\left(x+3\right)^2}\)

\(=\frac{3\left(x+3\right)}{2\left(x+3\right)\left(x+3\right)}+\frac{2x^2}{2\left(x+3\right)\left(x+3\right)}\)

\(=\frac{2x^2+3x+9}{2\left(x+3\right)^2}\)