a.(2+1)(22+1)(24+1)(28+1)-216=
b.502-492+482-472+...+22-1=
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2-6x-21\)
\(=x^2-6x+9-30\)
\(=\left(x-3\right)^2-\sqrt{30^2}\)
\(=\left(x-3-\sqrt{30}\right)\left(x-3+\sqrt{30}\right)\)
TL:
1.\(x^2-6x-21\)
\(=\left(x^2-6x+9\right)-30\)
\(=\left(x-3\right)^2-\left(\sqrt{30}\right)^2\)
\(=\left(x-3+\sqrt{30}\right)\left(x-3-\sqrt{30}\right)\)
Đề là phân tích đa thức thành nhân tử hả bn
\(8x^2y^2-12y^3+16x^2\)
\(4\left(2x^2y^2-3y^3+4x^2\right)\)
\(\frac{x+2}{x+1}+\frac{3}{x-2}=\frac{3}{x^2-x-x}+1\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}+\frac{3\left(x+1\right)}{\left(x-2\right)\left(x+1\right)}=\frac{3}{\left(x+1\right)\left(x-2\right)}+\frac{\left(x+1\right)\left(x-2\right)}{\left(x+1\right)\left(x-2\right)}\)
\(\Rightarrow x^2-4+3x+3=3+x^2-2x+x-2\)
\(\Leftrightarrow x^2-x^2+3x+2x-x=1+4-3\)
\(\Leftrightarrow4x=2\)
\(\Leftrightarrow x=\frac{1}{2}\)
\(5x\left(x-y\right)-3\left(y-y\right)\)
\(=5x\left(x-y\right)\)
( x + 3) 3 - (x + 1)3 =56
(x + 3 -x -1 ) [ (x+3)2 + (x +3)(x+ 1) + (x+ 1)2 ] = 56
2(x2 + 6x + 9 + x2 +4x +3 + x2 + 2x + 1 ) = 56
3x2 + 12x + 13 = 28
3x2 + 12x - 15 = 0
3x2 - 3x + 15x -15 = 0
3x ( x-1 ) + 15 ( x-1) =0
3 (x +5 ) (x-1 )=0
\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\x-1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=-5\\x=1\end{cases}}\)
vậy pt có tập nghiệm S = { -5; 1 }
#mã mã#
( x2 - 1 ).( x2 + 4x + 3 ) = 192
\(\Leftrightarrow\) ( x - 1 ).( x + 1 ) .( x2 + 3x + x + 3 ) = 192
\(\Leftrightarrow\) ( x - 1 ).( x + 1 ).[ x.( x + 3 )+ ( x + 3 ) ] = 192
\(\Leftrightarrow\) ( x - 1 .( x + 1 ).( x + 1 ).( x + 3 ) -192 = 0
\(\Leftrightarrow\) ( x + 1 )2.( x - 1 ).( x +3 ) - 192 = 0
Đặt : x + 1 = a
Khi đó phương trình trở thành :
\(\Rightarrow\) a2.( a - 2 ).( a + 2 ) - 192 = 0
\(\Leftrightarrow\)a2.( a2 - 4 ) - 192 = 0
\(\Leftrightarrow\) a4 - 4a2 - 192 = 0
\(\Leftrightarrow\) ( a4 - 4a2 + 4 ) - 4 - 192 = 0
\(\Leftrightarrow\) ( a2 - 2 )2 - 196 = 0
\(\Leftrightarrow\)( a2 - 2 )2 - 142 = 0
\(\Leftrightarrow\)( a2 - 2 - 14 ).( a2 - 2 + 14 ) = 0
\(\Leftrightarrow\)( a2 - 16 ).( a2 + 12 ) = 0
\(\Leftrightarrow\) ( a - 4 ).( a + 4 ).( a2 + 12 ) = 0
\(\Leftrightarrow\) \(\orbr{\begin{cases}\left(a-4\right).\left(a+4\right)=0\\a^2+12=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}\left(a-4\right).\left(a+4\right)=0\\a^2=-12\left(vl\right)\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}a-4=0\\a+4=0\end{cases}}\)\(\Leftrightarrow\)\(\orbr{\begin{cases}a=4\\a=-4\end{cases}}\)
Với a = 4 Với a = -4
\(\Rightarrow\) x + 1 = 4 \(\Rightarrow\) x + 1 = -4
\(\Leftrightarrow\) x = 3 \(\Leftrightarrow\) x = -5
Vậy phương trình có nghiệm là x = 3 , x = -5
\(\left(2x^3-3x-1\right).\left(5x+2\right)\)
\(=10x^4+4x^3-15x^2-6x-5x-2\)
\(=10x^4+4x^3-15^2-11x-2\)
a) \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)-2^{16}\)
\(=3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)-2^{16}\)
\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)-2^{16}\)
\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)-2^{16}\)
\(=\left(2^8-1\right)\left(2^8+1\right)-2^{16}\)
\(=2^{16}-1-2^{16}\)
\(=-1\)
=(50-49)(50+49)+(48-47)(48+47).............. +(2-1)(2+1)
=1.99+1.95+1.91................+1.33
=(99+3).25=2550