Bạn An được giữ quỹ lớp. Biết tổng quỹ lớp gồm ba loại tiền giấy với mệnh giá 20000, 50000 và 100000, hơn nữa số tiền mỗi loại bằng nhau và tất cả có 24 tờ tiền. Tính số tờ mỗi loại và tổng tiền quỹ hiện có
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kí hiệu: Nga là N
Lan là L
Hương là H
Ta có hình vẽ :
L N H 26m 10m
Theo bài ra : NL = 10 m ; NH = 26 m: NL vuông góc LH
Áp dụng định lí Pitago cho \(\Delta\)vuông NLH
=> NH^2 = NL^2 + HL^2
=> 26^2 = 10^2 + HL^2
=> HL^2 = 576
=> HL = 24
Vậy Lan cách Hương 24m
áp dụng t/c dãy tỉ số = nhau ta đc
\(+)\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=x+y+z\)(do a+b+c=1)
=> \(x+y+z=\frac{x}{a}\Leftrightarrow\left(x+y+z\right)^2=\frac{x^2}{a^2}\left(1\right)\)
+) \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=>\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\)(do a^2 +b^2 +c^2 =1)
\(\Leftrightarrow x^2+y^2+z^2=\frac{x^2}{a^2}\left(2\right)\)
từ (1) zà (2)
=>\(\left(x+y+z\right)^2=x^2+y^2+z^2\left(dpcm\right)\)
Có \(a+b+c=a^2+b^2+c^2=1\) và \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\left(a;b;c\ne0\right)\left(1\right)\)
\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\left(\frac{x}{a}\right)^2=\left(\frac{y}{b}\right)^2=\left(\frac{z}{c}\right)^2=\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}\left(2\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=\frac{\left(x+y+z\right)^2}{\left(a+b+c\right)^2}\). Theo \(\left(1\right)\)
\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\). Theo \(\left(2\right)\)
Có \(a+b+c=a^2+b^2+c^2=1\Leftrightarrow\left(a+b+c\right)^2=1^2=1\).
Từ các đẳng thức trên, ta suy ra : \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=\frac{\left(x+y+z\right)^2}{\left(a+b+c\right)^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)
\(=\frac{x+y+z}{1}=\frac{\left(x+y+z\right)^2}{1}=\frac{x^2+y^2+z^2}{1}\Leftrightarrow1\left(x+y+z\right)^2=1\left(x^2+y^2+z^2\right)\)
\(\Leftrightarrow\left(x+y+z\right)^2=x^2+y^2+z^2\Leftrightarrowđpcm\)
tam giác ABC đều => góc BAC =60 độ
tam giác ACD zuông cân ở C => góc CAD=45 độ
ta có góc BAD= góc BAC + góc CAD
=> góc BAD =60 độ +45 độ =105 độ
Ta có hình vẽ:
A B C D
Ta có: \(\Delta ACD\) vuông cân tại C
\(\Rightarrow\widehat{CAD}=\widehat{CDA}=\frac{180^o-90^o}{2}=45^o\)
Lại có: \(\Delta ABC\)đều \(\Rightarrow\widehat{BAC}=\widehat{ABC}=\widehat{BCA}=60^o\)
\(\Rightarrow\widehat{BAD}=\widehat{BAC}+\widehat{CAD}\)
\(\Rightarrow\widehat{BAD}=60^o+45^o=105^o\)
Vậy \(\widehat{BAD}=105^o\)
Bấm máy tính: Mode7->f(x):nhập biểu thức vào->bấm=tới end nhập 20 rồi bấm=->Ra kết quả chỉ có x=2 là chỉ có kq là số tự nhiên
bn lm thế ai chả lm đc copy mạng á. tui cần bài giải hẩn hoi
Lại sai đề." cắt đường trung trực của AC và BD ở M " là cái gì???. Phải là M là giao điểm hai đường trung trực của AC và BD
_________________________
Giải:
O A B M C D
M thuộc đường trung trực của BD => MB = MD
M thuộc đường trung trực của AB => MA = MC
Xét \(\Delta\)ABM và \(\Delta\)CDM có: AB = CD ; MA = MC ; MB = MD
=> \(\Delta\)ABM = \(\Delta\)CDM ( c-c-c)
=> ^BAM = ^DCM
mà ^BAM + ^MAO = ^DCM + MCO (= 180 độ )
=> ^MAO = ^MCO
thông cảm cho, dạo này già rùi mắt mũi lờ mờ ko thấy chữ @.@
\(\frac{a}{b}=\frac{c}{d}=t=>\hept{\begin{cases}a=bt\\c=dt\end{cases}}\)
vt\(=\left(\frac{a+b}{c+d}\right)^2=\left(\frac{bt+b}{dt+d}\right)^2=\frac{b^2\left(t+1\right)^2}{d^2\left(t+1\right)^2}=\frac{b^2}{d^2}\left(1\right)\)
vt\(=\frac{2018a^2+2019b^2}{2018c^2+2019d^2}=\frac{2018\left(bt\right)^2+2019b^2}{2018\left(dt\right)^2+2019d^2}=\frac{b^2\left(2018t^2+2019\right)}{d^2\left(2018t^2+2019\right)}=\frac{b^2}{d^2}\left(2\right)\)
từ (1) zà (2)
=>\(\left(\frac{a}{b}+\frac{c}{d}\right)^2=\frac{2018a^2+2019b^2}{2018c^2+2019d^2}\left(dpcm\right)\)
A A A B B B C C C D D D M M M 1 1 2 1 2
a) Xét \(\Delta AMC\)và \(\Delta DMB\),ta có :
AM = DM(gt)
\(\widehat{M_1}=\widehat{M_2}\)(đối đỉnh)
CM = BM(vì M là trung điểm của BC)
=> \(\Delta AMC=\Delta DMB\left(c.g.c\right)\)
=> \(\widehat{C}=\widehat{B_1}\)(hai góc tương ứng)
AC = BD(hai cạnh tương ứng)
Khi đó \(\widehat{ABD}=\widehat{B_1}+\widehat{B_2}=\widehat{B_1}+\widehat{C}=90^0\)
Vậy góc ABD = 900
b) Xét \(\Delta ABC\)và \(\Delta BAD\)có :
AB chung
AC = BD(cmt)
=> \(\Delta ABC=\Delta BAD\)(hai cạnh góc vuông)
c) Từ kết quả câu b)
=> BC = AD = 2AM <=> \(AM=\frac{1}{2}BC\)
Em kiểm tra lại đề bài nhé! Trên tia đối tia AM hay tia đối tia MA ?
gọi số tờ tiền có 3 mệnh giá mà An đang giữ lần lượt là: a, b, c;
+) theo bài ra ta có: a.20 000=b.50000=c.100 000;
<=> 2a=5b=10c;
và a+b+c=24;
ta có 2a=5b;
=> 2a-5b=0;
<=> a=5b/2;
=>5b/2+b+c=24; (1)
và 5b-10c=0; (2);
từ 1 và 2 ta có hpt;
5b/2+b+c=245b-10
=> b=6;
=> c=3;
=> a=5.6/2=15;
vậy có 15 tờ 20 000 đ
có 6 tờ 50 000 đ
có 3 tờ 100 000 đ