Cho đoạn thẳng AB, đường thẳng d; trung trực của đoạn AB. Viết tập hợp d theo cách nêu tính chất của các điểm M thuộc d ( Không dùng trung điểm AB).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C I S D E F G K L K' M x
Gọi giao điểm khác D của hai đường tròn (BED);(CFD) là K'; K'I cắt EF tại L; DL cắt (I;ID) tại M khác D.
Ta thấy IE = IF; AI là phân giác ngoài của ^EAF, từ đây dễ suy ra 4 điểm A,E,I,F cùng thuộc một đường tròn
Vì 3 điểm D,F,E lần lượt thuộc các cạnh BC,CA,AB của \(\Delta\)ABC nên (BED);(CFD);(AFE) đồng quy (ĐL Miquel)
Hay điểm K' thuộc đường tròn (AIFE). Do vậy LI.LK' = LE.LF = LD.LM (= PL/(G) = PL/(I) )
Suy ra 4 điểm K',M,I,D cùng thuộc một đường tròn. Mà ID = IM nên ^IK'D = ^IK'M.
Đồng thời ^DIM = 1800 - ^DK'M = 1800 - ^EK'F + 2.^FK'D = ^BAC + 2.^ACB = 2.^AID
Suy ra IA vuông góc DM, từ đó M,L,D,A thẳng hàng (Vì IA cũng vuông góc AD)
Khi đó dễ thấy AL là phân giác ^BAC, K'L là phân giác ^EK'F, mà tứ giác AEK'F nội tiếp
Suy ra AEK'F là tứ giác điều hòa, từ đây AK' là đường đối trung của \(\Delta\)AEF
Suy ra K' trùng K. Kẻ tiếp tuyến Kx của (G), ta có ^BKx = ^EKx - ^EKB = ^EFK - ^EFD = ^BCK
Do đó (BKC) tiếp xúc với (G) tại K, tức KG đi qua tâm của (BKC) (1)
Gọi S là trung điểm cung lớn BC của (ABC). Có SB = SC và ^BKC = ^AED + ^AFD = 1800 - ^BSC/2
Suy ra S là tâm của đường tròn (BKC) (2)
Từ (1) và (2) suy ra KG luôn đi qua S cố định (Vì S là trung điểm cùng BC lớn cố định) (đpcm).
pt <=> \(\orbr{\begin{cases}3\left(x^2-6x+5\right)=2-4m\\3\left(x^2-6x+5\right)=4m-2\end{cases}}\)
<=> \(\orbr{\begin{cases}3x^2-18x+13+4m=0\left(1\right)\\3x^2-18x+17-4m=0\left(2\right)\end{cases}}\)
Điều kiện để phương trình ban đầu có 4 nghiệm phân biệt là phương trình (1),và phương trình (2) đều đồng thời có hai nghiệm phân biệt.
Điều kiện phương trình (1) có hai nghiệm phân biệt:
\(\Delta'>0\Leftrightarrow9^2-3.\left(13+4m\right)>0\Leftrightarrow m< \frac{7}{2}\)
Điều kiện phương trình (2) có hai nghiệm phân biệt:
\(\Delta'>0\Leftrightarrow9^2-3.\left(17-4m\right)>0\Leftrightarrow m>\frac{-5}{2}\)
Vậy \(-\frac{5}{2}< m< \frac{7}{2}\) thì phương trình ban đầu có 4 nghiệm phân biêt.
Để hàm số y = f(x) = \(\frac{2x-3}{x^2-\left(2m-1\right)x+m^2}\) xác định trên \(ℝ\)khi và chỉ khi \(x^2-\left(2m-1\right)x+m^2\ne0\), \(\forall x\inℝ\)
Nghĩa là \(x^2-\left(2m-1\right)x+m^2=0\) vô nghiệm
<=> \(\Delta< 0\)
<=> \(\left(2m-1\right)^2-4m^2< 0\)
<=> \(-4m+1< 0\)
<=> m > 1/4.