Tính
a) (x2-3x+xy-3y) : (x+y)
b) (x2-y2+6x+9) : (x+y+3)
c) (8x3-1) : ( 4x2-2x+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cậu đặt phép chia, nó sẽ ra :
2x3 -x2 -x +1 = (x-2)(2x2 + 3x + 5) dư 11
=> 2x3 -x2 -x +1 \(⋮\)x-2 \(\Leftrightarrow\)x-2=11
\(\Leftrightarrow\)x=13
bđt \(\Leftrightarrow\)\(a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2\ge3a^3b+3b^3c+3c^3a\)
Có: \(a^4+a^2b^2\ge2a^3b\) tương tự với b, c, do đó cần cm: \(a^2b^2+b^2c^2+c^2a^2\ge a^3b+b^3c+c^3a\)
\(\Leftrightarrow\)\(a^2b\left(b-a\right)+b^2c\left(c-b\right)+c^2a\left(a-c\right)\ge0\) (1)
Do a,b,c vai trò như nhau nên giả sử \(0\le a\le b\le c\) ta có:
\(c^2a\left(a-c\right)=c.c.a\left(a-c\right)\ge b.a.a\left(a-c\right)=a^2b\left(a-c\right)\)
\(\Rightarrow\)\(VT_{\left(1\right)}\ge a^2b\left(b-a\right)+b^2c\left(c-b\right)+a^2b\left(a-c\right)=a^2b\left(b-a+a-c\right)+b^2c\left(c-b\right)\)
\(=a^2b\left(b-c\right)-b^2c\left(b-c\right)=b\left(b-c\right)\left(a^2-bc\right)\)
Mà \(0\le a\le b\le c\) nên \(\hept{\begin{cases}b-c\le0\\a^2-bc\le0\end{cases}}\)\(\Rightarrow\)\(VT_{\left(1\right)}\ge b\left(b-c\right)\left(a^2-bc\right)\ge0\)
\(a,x^2-5x-xy+5y\)
\(=x\cdot\left(x-y\right)-5\cdot\left(x-y\right)\)
\(=\left(x-y\right)\cdot\left(x-5\right)\)
\(b,x^3+6x^2+9x\)
\(=x\cdot\left(x^2+6x+9\right)\)
\(=x\cdot\left(x+3\right)^2\)
\(c,x^2+x-2\)
\(=x^2-x+2x-2\)
\(=x\cdot\left(x-1\right)+2\cdot\left(x-1\right)\)
\(=\left(x-1\right)\cdot\left(x+2\right)\)
\(d,4x^2-\left(x^2+1\right)\)
\(=\left(2x-x^2-1\right)\cdot\left(2x+x^2+1\right)\)
\(=\left(2x-x^2-1\right)\cdot\left(x+1\right)^2\)
Cho g( x ) = 0
\(\Leftrightarrow\)( x - 2 )( x - 3 ) = 0
\(\Leftrightarrow\)x = 2 hoặc x = 3
f( 2 ) = 2 . 23 - 3 . a . 22 + 2 . 2 + b = 20 - 12a + b ( 1 )
f( 3 ) = 2 . 33 - 3 . a . 32 + 2 . 3 + b = 48 - 27a + b ( 2 )
Lấy ( 1 ) và ( 2 ) ta có :
- 28 + 15a = 0
\(\Rightarrow\)15a = 28
\(\Rightarrow\)a = 28 / 15
\(\Rightarrow\)b = 12 / 5
Bài 1
\(a,5x^2-10xy+5y^2\)
\(=5\cdot\left(x^2-2xy+y^2\right)\)
\(=5\cdot\left(x-y\right)^2\)
\(b,x^2-y^2+6y-9\)
\(=x^2-\left(y^2-6y+9\right)\)
\(=x^2-\left(y-3\right)^2\)
\(=\left(x-y+3\right)\cdot\left(x+y-3\right)\)
\(c,3x^4-75x^2y^2\)
\(=3x^2\cdot\left(x^2-25y^2\right)\)
\(=3x^2\cdot\left(x-5y\right)\cdot\left(x+5y\right)\)
\(d,x^4y+xy^4\)
\(=xy\left(x^3+y^3\right)\)
\(=xy\cdot\left(x+y\right)\cdot\left(x^2-xy+y^2\right)\)
TL :
Để am chia hết cho an thì a phải khác 0 và m phải lớn hơn hoặc bằng n
Chúc bn hok tốt ~
ta có:
a) (x2 - 3x + xy - 3y) : (x + y)
= [x(x - 3) + y(x - 3)] : (x + y)
= (x + y)(x - 3) : (x + y)
= x - 3
b) (x2 - y2 + 6x + 9) : (x + y + 3)
= [(x2 + 6x + 9) - y2] : (x + y + 3)
= [(x + 3)2 - y2] : (x + y + 3)
= (x + y + 3)(x - y + 3) : (x + y + 3)
= x - y + 3