K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

C = x2 - 4xy + 5y2 + 10x - 22y + 28

= (x^2 - 4xy + 4y^2) + (10x - 20y) + (y^2 - 2y) + 28

= (x - 2y)^2 + 10(x - 2y) + 25 + (y^2 - 2y + 1) + 2

= (x - 2y)^2 + 2.(x - 2y).5 + 5^2 + (y - 1)^2 + 2

= (x - 2y + 5)^2 + (y - 1)2 + 2

Vì (x−2y+5)^2≥0∀x;y; (y−1)^2≥0∀y nên (x−2y+5)^2+(y−1)^2+2≥2∀x;y

hay C≥2∀x;y

Dấu ''='' xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-2y+5\right)^2=0\\\left(y-1\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}\Rightarrow}\hept{\begin{cases}x=2y-5\\y=1\end{cases}\Rightarrow}\hept{\begin{cases}x=-3\\y=1\end{cases}}}\)

16 tháng 11 2019

Ta có:

E là trung điểm của AD (gt), F là trung điểm của BC (gt) nên EF là đường trung bình của hình thang ABCD.

\(\Rightarrow\) EF // CD hay EF // CH.

\(\Delta\)AHD vuông tại H có HE là đường trung tuyến thuộc cạnh huyền AD.

Ta có: HE = ED = \(\frac{1}{2}\) AD (tính chất tam giác vuông)

\(\Rightarrow\Delta\) EDH cân tại E \(\Rightarrow\widehat{D}\)\(\widehat{H}\) 1(tính chất tam giác cân)

\(\widehat{D}\)=\(\widehat{C}\)(vì ABCD là hình thang cân)

\(\Rightarrow\)\(\widehat{H}\)= \(\widehat{C}\)\(\Rightarrow\) EH // CF (vì có cặp góc đồng vị bằng nhau)

Vậy tứ giác EFCH là hình bình hành.

#Trang