4+3+1=...
lớp 8 điểm danh
trả lời xong kb nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)Ta co
n5-5n3+4n
=n(n4-5n2+4)
=n(n4-n2-4n2+4)
=n(n2(n2-1)-4(n2-1)
=n(n2-4)(n2-1)
=n(n-1)(n+1)(n+2)(n-2)
vi n(n-1)(n+1)(n-2)(n+2) la h 5 so tu nhien lien tiep nen chia het cho 3,5,8 ma 3.5.8=120
=>n5-5n3+4n chia het 120
g) \(\left(x-1\right)^3-x\left(x-2\right)^2-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-1\right)^3-\left(x^2-2x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-1\right)^3-\left(x-1\right)^2\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x-1-x+2\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
h) \(x^2-5x+6=0\)
\(\Leftrightarrow x^2-2x-3x+6=0\)
\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}\)
i) \(2x^3+6x^2=x^2+3x\)
\(\Leftrightarrow2x^3+5x^2-3x=0\)
\(\Leftrightarrow x\left(2x^2+5x-3\right)=0\)
\(\Leftrightarrow x\left(2x^2+6x-x-3\right)=0\)
\(\Leftrightarrow x\left[2x\left(x+3\right)-\left(x+3\right)\right]=0\)
\(\Leftrightarrow x\left(2x-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow x=0\)hoặc \(x=\frac{1}{2}\)hoặc x = -3
\(h.x^2-5x+6=0\)
\(x^2-1x-6x+6=0\)
\(x\left(x-1\right)-6\left(x-1\right)=0\)
\(\left(x-6\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-6=0\\x-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=6\\x=1\end{cases}}\)
a) \(ax-bx+ab-x^2=\left(ax+ab\right)-\left(bx+x^2\right)=a\left(x+b\right)-x\left(x+b\right)=\left(x+b\right)\left(a-x\right).\)
b) \(x^2-2xy+y^2-9=\left(x^2-2xy+y^2\right)-3^2=\left(x-y\right)^2-3^2=\left(x-y-3\right)\left(x+y+3\right).\)
Học tốt nhé ^3^
\(a.=a\left(x+b\right)-x\left(b+x\right)\)
\(=a\left(x+b\right)-x\left(x+b\right)\)
\(=\left(a-x\right)\left(x+b\right)\)
\(b.=\left(x-y\right)^2-3^2\)
\(=\left(x-y-3\right)\left(x-y+3\right)\)
_Moon_
Ta có: x + y = 1 => x = 1 - y
Khi đó: x3 + y3 = (x + y)(x2 - xy + y2)
= 1.(x2 - xy + y2) = x2 + 2xy + y2 - 3xy
= (x + y)2 - 3xy = 1 - 3xy
= 1 - 3y(1 - y)
= 1 - 3y + 3y2
= 3(y2 - y + 1/4) + 1/4
= 3(y - 1/2)2 + 1/4 \(\ge\)1/4 \(\forall\)y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}y-\frac{1}{2}=0\\x=1-y\end{cases}}\) <=> \(\hept{\begin{cases}y=\frac{1}{2}\\x=1-\frac{1}{2}=\frac{1}{2}\end{cases}}\)
Vậy Min của x3 + y3 = 1/4 <=> x = y = 1/2
Ta có :
\(x+y=1\)
\(\Leftrightarrow\left(x+y\right)^2=1\)
\(\Leftrightarrow x^2+2xy+y^2=1\)
\(\Leftrightarrow x^2+y^2=1-2xy\)
Ta lại có :
\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=1-2xy-xy=1-3xy=-3xy+1\ge1\)
Dấu '' = '' xảy ra
\(\Leftrightarrow-3xy=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\y=0\end{cases}}\)
Vậy...............
+) Ta có :
\(x+y=a\)
\(\Leftrightarrow\left(x+y\right)^2=a^2\)
\(\Leftrightarrow x^2+2xy+y^2=a^2\)
\(\Leftrightarrow x^2+y^2=a^2-2b\)
bằng 8 nha bn
4+3+1=8