(1/x-1 - x/1-x3 * x2 + x + 1/x + 1 ) / 2x+1/x2 + 2x + 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu A. writeln (x)
(sai thì thôi)
#Học tốt!!!
B đúng. A sai Vì:
A. sau If là phép so sánh nên x:=7(đây là phép gán) nên k hợp lệ.
B. Sau If là so sánh và sau từ khóa then là câu lệnh(có thể là câu lệnh gán) -> hợp lệ.
Hi các đồng bạn ARMY~
cho x,y,z thỏa mãn xyz=1. cm: 1/ xy+x+1 +1/ yz+y+1 +1/ xyz+yz+y =1 ... Ta có:1/1+x+xy + 1/1+y+yz +1/1+z+xz= xyz/ xyz+x+xy +1/1+y+yz + xyz/xyz+z+xz ..... cho x,y,z>0 và xyz=1. cmr x/(xy+x+1)^2+y/(yz+y+1)^2+z/(zx+z+1)^2 >= 1/x+y+z
Ta có: \(\frac{1}{\left(x-y\right)\left(y-z\right)}+\frac{1}{\left(y-z\right)\left(z-x\right)}+\frac{1}{\left(z-x\right)\left(x-y\right)}\)
= \(\frac{z-x}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}+\frac{x-y}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}+\frac{y-z}{\left(z-x\right)\left(x-y\right)\left(y-z\right)}\)
= \(\frac{z-x+x-y+y-z}{\left(x-y\right)\left(y-z\right)\left(z-x\right)}\)
= \(\frac{0}{ }\)
Ta có
x4 – 6 x3 + ax2 + bx + 1 = (x2+cx+dx2+cx+d)2 với mọi x
<=> x4+x3.2c+x2(c2+2d)+x.2cd+d2x4+x3.2c+x2(c2+2d)+x.2cd+d2 = x4 – 6 x3 + ax2 + bx + 1 với mọi x
Giải phương trình tương đương ( đồng nhất thức )
=> c = -3 ; a = 11 ; b = -6 ; d =1
Sửa đề
\(P=\frac{x^2-6xy+6y^2}{x^2-2xy+y^2}\)
\(\Leftrightarrow P+3=\frac{x^2-6xy+6y^2}{x^2-2xy+y^2}+3=\frac{\left(3y-2x\right)^2}{\left(x-y\right)^2}\ge0\)
\(\Leftrightarrow P\ge-3\)