K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2019

a) Để \(\frac{3x+2}{x^3-1}\)xác định thì \(x^3-1\ne0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)\ne0\)

Mà \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)nên \(x-1\ne0\)

\(\Leftrightarrow x\ne1\)

Vậy x khác 1 thì \(\frac{3x+2}{x^3-1}\)xác định 

b) Để \(\frac{x^2+1}{x^3+1}\)xác định thì \(x^3+1\ne0\)\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)\ne0\)Mà \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)nên \(x+1\ne0\)\(\Leftrightarrow x\ne-1\)Vậy x khác -1 thì \(\frac{x^2+1}{x^3+1}\)xác định 
20 tháng 12 2019

a, Để 3x+2/x3-1 được xác định thì x3 -1 khác 0 (viết dấu khác)

                                                   x3 khác 1

                                                   x khác 1/3

vậy x khác 1/3 thì phân thức trên được xác định

Cách làm: cho mẫu khác không rồi thực hiện như tìm x nha

20 tháng 12 2019

\(A=\frac{1}{x-2}+\frac{1}{x-2}+\frac{x^2+1}{x^2-4}\)

a)\(A=\frac{1}{x-2}+\frac{1}{x-2}+\frac{x^2+1}{x^2-4}\)

\(=\frac{x-2+x-2}{x^2-4}+\frac{x^2+1}{x^2-4}\)

\(=\frac{x^2+2x-3}{x^2-4}\)

đầu bài sai rồi bạn ơi bạn cho x=0 thì \(A=\frac{3}{4}\)là số dương rồi 

20 tháng 12 2019

Áp dụng định lý Bezout ta có:
\(f\left(x\right)\)chia hết cho \(2x-1\Rightarrow f\left(x\right)=\left(2x-1\right)q\left(x\right)\)

                                                 \(\Rightarrow f\left(\frac{1}{2}\right)=0\left(1\right)\)

\(f\left(x\right)\)chia cho \(x-2\)dư 6\(\Rightarrow f\left(x\right)=\left(x-2\right)q\left(x\right)+6\)

                                                  \(\Rightarrow f\left(2\right)=6\left(2\right)\)

Vì \(f\left(x\right)\)chia cho \(2x^2-5x+2\)được thương là \(x+2\)và còn dư nên

\(f\left(x\right)=\left(2x^2-5x+2\right)\left(x+2\right)+ax+b\)

         \(=\left(2x^2-4x-x+2\right)\left(x+2\right)+ax+b\)

         \(=\left[2x\left(x-2\right)-\left(x-2\right)\right]\left(x+2\right)+ax+b\)

        \(=\left(x-2\right)\left(2x-1\right)\left(x+2\right)+ax+b\)Kết hợp với (1) và (2) ta được:
\(\hept{\begin{cases}\frac{1}{2}a+b=0\\2a+b=6\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=4\\b=-2\end{cases}}\)

Vạy \(f\left(x\right)=\left(2x^2-5x+2\right)\left(x+2\right)+4x-2\)

20 tháng 12 2019

Dễ dàng chứng minh AIHK là hình chữ nhật nên AH=IK.

b

Gọi O là giao điểm của IK và AH.

Do AM là đường trung tuyến ứng với cạnh huyền của tam giác vuông nên MA=MC

\(\Rightarrow\Delta\)MAC cân tại M => \(\widehat{MAC}=\widehat{MCA}\left(1\right)\)

Do O là giao điểm 2 đường chéo của hình chữ nhật nên OA=OK => tam giác OAK cân tại O \(\Rightarrow\widehat{OKA}=\widehat{OAK}\left(2\right)\)

Cộng vế theo vế của (1);(2) ta có:

\(\widehat{MAK}+\widehat{OKA}=\widehat{MCK}+\widehat{OAK}=\widehat{AHC}=90^0\)

\(\Rightarrowđpcm\)

c

AIHK là hình vuông nên AH là đường phân giác.Mà AH là đường cao nên tam giác ABC cân tại A.

Mà tam giác ABC vuông tại A nên ABC vuông cân tại A.

Vậy để tứ giác AIHK là hình vuông thì tam giác ABC phải là tam giác vuông cân.

20 tháng 12 2019

Bài 1:Cho tam giác ABC cân tại A, AH vg góc vs BC, MA = MB, AN = NC, E đx vs H qua M.

a, MNCB là hình j?

b, AHBE là hình j?

c, Cm: ACHE là hình bình hành

d, Cm: AH, CE, MN đồng quy

Bài hình trường mk nha bn!!Chúc bạn t

20 tháng 12 2019

Bài toán nâng cao: 

 Cho a+b+c = abc và 1/a + 1/b + 1/c = 2

Tính 1/ a2 + 1/b2 +1/c2 = ??

Cần k mk giải lun cho!!

21 tháng 12 2019

a) Giá trị của phân thức được xác định 

\(\Leftrightarrow x^2-1\ne0\)

\(\Leftrightarrow x\ne\pm1\)

Vậy để giá trị của phân thức đã cho xác định \(\Leftrightarrow x\ne\pm1\)

b)Ta có: 

 \(\frac{3x+3}{x^2-1}=\frac{3\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}=\frac{3}{x-1}\)

c) Để phân thức nhận giá trị nguyên dương

\(\Leftrightarrow\frac{3}{x-1}\)có giá trị nguyên dương 

\(\Leftrightarrow x-1\)\(\inƯ\left(3\right)=\left\{1;3\right\}\)

x-113
x2 ( Nhận )4 ( Nhận )

Vậy với \(x\in\left\{2;4\right\}\)thì giá trị của phân thức có giá trị nguyên dương.

20 tháng 12 2019

Ta có : x2 + y2 + 6y + 8 = 0

           x2 + ( y2 + 6y + 9 ) - 1 = 0

           x2 + (y + 3)2 = 1    (1)

Vì x2 >= 0 với mọi x;  (y + 3)>= 0 với mọi y nên từ (1) => x2 =< 1

Mà x2 >= 0; x2 thuộc N* ( vì x thuộc z)

=>  x2 = 0 hoặc x2 = 1.

+ với x2 = 0 <=> x = 0 và (y+ 3)2 = 1

                                      <=> y = -2 hoặc y = -4

+ với x2 = 1 <=> x = 1 hoặc x = -1 

Khi đó (y+3)2 = 0 <=> y + 3 =0 <=> y = -3

Vậy (x;y) thuộc (0;-2) , (0;-4) , (1;-3) , (-1;-3).