K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2019

mk ko chơi

t.i.c.k đi mk trả lời rồi đó

26 tháng 4 2019

mik ko chơi cái đó

26 tháng 4 2019

ta thấy 1+x>= 2 căn x

=> 2 căn x/1+x bé hơn hoặc = 1

hok tốt

dấu = xảy ra khi x=-1

27 tháng 4 2019

ĐKXĐ: x > 0

Áp dụng bđt Cô-si có \(x+1\ge2\sqrt{x}\)

                              \(\Rightarrow\frac{2\sqrt{x}}{1+x}\le1\)

Dấu "=" tại x = 1 (T/m ĐKXĐ)

27 tháng 4 2019

Ta có \(x^4+y^4-1=xy\left(3-2xy\right)\)

\(\Leftrightarrow x^4+y^4-1=3xy-2x^2y^2\)

\(\Leftrightarrow x^4+2x^2y^2+y^4=3xy+1\)

\(\Leftrightarrow\left(x^2+y^2\right)^2=3xy+1\)

Vì \(\left(x^2+y^2\right)^2\ge0\forall x;y\)

\(\Rightarrow3xy+1\ge0\)

\(\Leftrightarrow xy\ge-\frac{1}{3}\)

\(\Leftrightarrow P\ge-\frac{1}{3}\)

Dấu "=" tại x = y = 0

26 tháng 4 2019

h bn thay x=1, y=3 vào phương trình đường thẳng (d)

tìm được m 

hok tốt

27 tháng 4 2019

Vì \(M\left(1;3\right)\in\left(d\right)\)

\(\Rightarrow3=2m+m-3\)

\(\Leftrightarrow3m=6\)

\(\Leftrightarrow m=2\)

27 tháng 4 2019

Làm câu b)

Để phương trình có hai nghiệm phân biệt:

\(\Delta'\ge0\Leftrightarrow3^2-\left(m+1\right)\ge0\Leftrightarrow m\le8\)

Áp dụng định lí Vi-ét ta có:

\(\hept{\begin{cases}x_1+x_2=6\\x_1.x_2=m+1\end{cases}}\)(1)

Xét: \(x^2_1+x^2_2=3\left(x_1+x_2\right)\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=3\left(x_1+x_2\right)\)(2)

Từ 1, 2 ta có:

\(6^2-2\left(m+1\right)=3.6\Leftrightarrow m=8\)(tm)

Vậy ...

26 tháng 4 2019

\(a^2+b^2=a+b+ab\Leftrightarrow a+b=a^2+b^2-ab\)

\(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)=\left(a+b\right)\left[-\left(a+b\right)\right]=-\left(a+b\right)^2\le0\)

Dấu "=" xảy ra khi (a+b)2=0 <=> a+b=0

<=> \(a^2+b^2-ab=0\Leftrightarrow\left(a+b\right)^2-3ab=0^2-3ab=-3ab=0\Leftrightarrow ab=0\Leftrightarrow\orbr{\begin{cases}a=0\\b=0\end{cases}}\)

mà a+b=0 => a=b=0