1. Tìm các số hữu tỉ x,y,z biết:
a) 2x=3y=7z và x+y-z= 58
b) 2x=3y=5zvà x+y-z= -190
c) 3x=2y,7y=5zvà x-y=z= 32
d) x−12 =y−23 =z−34 và x-2y=3z= -10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(|x-2019|\ge0\forall x\in Q\)
\(|y-2020|\ge0\forall y\in Q\)
\(\Rightarrow|x-2019|+|y-2020|+7\ge7\forall x,y\in Q\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-2019=0\Rightarrow x=2019\\y-2020=0\Rightarrow x=2020\end{cases}}\)
Vậy GTNN của S là 7 khi x = 2019; y = 2020
\(x=2y\Rightarrow4x=8y\Leftrightarrow\frac{x}{8}=\frac{y}{4}\left(1\right)\)
\(3y=4z\Leftrightarrow\frac{y}{4}=\frac{z}{3}\left(2\right)\)
Từ (1) và (2) suy ra : \(\frac{x}{8}=\frac{y}{4}=\frac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có :
\(\frac{x}{8}=\frac{y}{4}=\frac{z}{3}=\frac{x+y+z}{8+4+3}=\frac{60}{15}=4\)
Vậy \(\frac{x}{8}=4\Leftrightarrow x=32\)
\(\frac{y}{4}=4\Leftrightarrow y=16\)
\(\frac{z}{3}=4\Leftrightarrow z=12\)
Theo bài ra ta có: x = 2y <=>\(\frac{x}{2}=\frac{y}{1}\)<=>\(\frac{x}{8}=\frac{y}{4}\);
3y = 4z <=>\(\frac{z}{3}=\frac{y}{4}\)
Hay \(\frac{x}{8}=\frac{y}{4}=\frac{z}{3}\)
Mà x + y + z = 60
Suy ra: \(\frac{x}{8}=\frac{y}{4}=\frac{z}{3}=\frac{x+y+z}{8+4+3}=\frac{60}{15}=4\)
Từ đó suy ra: \(\hept{\begin{cases}x=8.4=32\\y=4.4=16\\z=3.4=12\end{cases}}\)
Vậy x = 32; y = 16; z = 12
Bài làm :
\(\text{Đặt : }x=\frac{y}{2}=\frac{z}{3}=k\)
\(\Rightarrow\hept{\begin{cases}x=k\\y=2k\\z=3k\end{cases}}\left(\text{*}\right)\)
Vì z-y=-5 nên :
\(3k-2k=-5\Leftrightarrow k=-5\)
Thay k=-5 vào (*) ; ta được :
\(\Rightarrow\hept{\begin{cases}x=k=-5\\y=2k=-10\\z=3k=-15\end{cases}}\)
p/s: tại olm ko dùng font latex khi trl trên hỏi đáp nhỉ?
A = 1 + 3 + 32 + 33 + ... + 3999
⇔ 3A = 3( 1 + 3 + 32 + 33 + ... + 3999 )
⇔ 3A = 3 + 32 + 33 + ... + 31000
⇔ 3A - A = 2A
= 3 + 32 + 33 + ... + 31000 - ( 1 + 3 + 32 + 33 + ... + 3999 )
= 3 + 32 + 33 + ... + 31000 - 1 - 3 - 32 - 33 - ... - 3999
= 31000 - 1
⇔ A = \(\frac{3^{1000}-1}{2}\)
B = 1 + 5 + 52 + 53 + ... + 599
⇔ 5B = 5( 1 + 5 + 52 + 53 + ... + 599 )
⇔ 5B = 5 + 52 + 53 + ... + 5100
⇔ 5B - B = 4B
= 5 + 52 + 53 + ... + 5100 - ( 1 + 5 + 52 + 53 + ... + 599 )
= 5 + 52 + 53 + ... + 5100 - 1 - 5 - 52 - 53 - ... - 599
= 5100 - 1
⇔ B = \(\frac{5^{100}-1}{4}\)
a) 2x = 3y =7z và x+y-z =58
\(\Rightarrow\frac{2x}{42}=\frac{3y}{42}=\frac{7z}{42}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{6}=\frac{x+y-z}{21+14-6}=\frac{58}{29}=2\)
\(\frac{x}{21}=2\Rightarrow x=21\cdot2=42\)
\(\frac{y}{14}=2\Rightarrow y=14\cdot2=28\)
\(\frac{z}{6}=2\Rightarrow z=6\cdot2=12\)