Cho \(\dfrac{a}{b}\) < \(\dfrac{c}{d}\). CMR \(\dfrac{a}{b}\) < \(\dfrac{a+c}{\text{}b+d}\) < \(\dfrac{c}{d}\)
Ai nhanh tui tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số học sinh của trường An Vĩ là `x` (học sinh)
Điều kiện: `x` thuộc `N`*, `300 <= x <= 500`
Do học sinh trường an vĩ khi xếp hàng 12 thì thừa 2 , hàng 18 thì thừa 8 , hàng 10 thì vừa đủ
`=> {(x+10 vdots 12),(x+10 vdots 18),(x vdots 10):}`
`=> x + 10 ∈ BC(12;18)`
Ta có:
`12 = 2^2 . 3`
`18 = 2 . 3^2`
`=> BCNN(12,18) = 2^2 . 3^2 = 36`
`=> x + 10 ∈ B (36) = {36;72;108;144;180;216;252;288;324;360;396;432;468;504;540...}`
Do `x vdots` `10 -> x + 10 vdots 10`
`=> x + 10 ∈ {180;360;540;..}`
`=> x ∈ {170;350;530}`
Kết hợp điều kiện: `x = 350`
Vậy trường An Vĩ có `350` học sinh
Giải:
Thời gian từ 21 giờ 45 phút đến 24 giờ hôm trước là:
24 giờ - 21 giờ 45 phút = 2 giờ 15 phút
Thời gian Nam đã ngủ là:
2 giờ 15 phút + 6 giờ 30 phút = 8 giờ 45 phút
Chọn C: 8 giờ 45 phút.
Khoảng thời gian từ 21 giờ 45 phút hôm trước đến 0 giờ ngày hôm sau là: 24 giờ - 21 giờ 45 phút = 2 giờ 15 phút
Bạn Nam đã ngủ trong khoảng thời gian là:
2 giờ 15 phút + 6 giờ 30 phút = 8 giờ 45 phút
Chọn C
A = \(\dfrac{4}{4}\) - 3|\(x-2\)|
A = 1 - 3|\(x-2\)|
Vì |\(x-2\)| ≥ 0 \(\forall\) \(x\) ⇒ 3.|\(x-2\)| ≥ 0
Vậy 1 - 3|\(x-2\)| ≥ 1 dấu bằng xảy ra khi \(x-2\) = 0 ⇒ \(x=2\)
Vậy giá trị nhỏ nhất của A là 1 xảy ra khi \(x\) = 2
Bài 1:
m \(\in\) N; 102 + m - 68 \(⋮\) 2
(102 - 68) + m \(⋮\) 2
34 + m ⋮ 2
m ⋮ 2
m = 2k (k; \(\in\) N)
Vạy n = 2k (k \(\in\) N)
Bài 2:
15 + 24 - m + 305 \(⋮\) 5 (m \(\in\) N)
⇒ 24 - m ⋮ 5
25 - (1 + m) ⋮ 5
1 + m ⋮ 5
m + 1 = 5k
m = 5k - 1 (k \(\in\) N)
Vậy m = 5k - 1 (k \(\in\) N)
Ta có:
\(a^2+a+1=\left(a^2+2.a.\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(a+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall a\)
\(\Rightarrow\)PT đã cho vô nghiệm
Vậy không có giá trị \(a\) thỏa mãn \(P=a^{2014}+\dfrac{1}{a^{2014}}\)
Bài 1:
AB//CD
=>\(\widehat{A}+\widehat{D}=180^0\)
=>\(2\widehat{D}+\widehat{D}=180^0\)
=>\(3\cdot\widehat{D}=180^0\)
=>\(\widehat{D}=60^0\)
\(\widehat{A}=2\cdot60^0=120^0\)
AB//CD
=>\(\widehat{B}+\widehat{C}=180^0\)
=>\(\widehat{C}+\widehat{C}+40^0=180^0\)
=>\(2\cdot\widehat{C}=180^0-40^0=140^0\)
=>\(\widehat{C}=70^0\)
\(\widehat{B}=70^0+40^0=110^0\)
Bài 2:
Xét ΔAHD vuông tại H và ΔBKC vuông tại K có
AD=BC
\(\widehat{ADH}=\widehat{BCK}\)
Do đó: ΔAHD=ΔBKC
=>DH=CK
Ta có:
\(\dfrac{a}{b}< \dfrac{c}{d}\\ \Rightarrow ad< bc\\ \Rightarrow\left\{{}\begin{matrix}ad+ab< bc+ab\\ad+cd< bc+cd\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}a\left(b+d\right)< b\left(a+c\right)\\d\left(a+c\right)< c\left(b+d\right)\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{a}{b}< \dfrac{a+c}{b+d}\\\dfrac{c}{d}>\dfrac{a+c}{b+d}\end{matrix}\right.\\ \Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)
Vậy...
Giải thích chi tiết một chút cho bạn dễ hiểu:
+)
\(\dfrac{a}{b}< \dfrac{c}{d}\\ \Rightarrow\dfrac{a}{b}.bd< \dfrac{c}{d}.bd\\ \Rightarrow ad< bc\)
+)
\(\left\{{}\begin{matrix}a\left(b+d\right)< b\left(a+c\right)\\d\left(a+c\right)< c\left(b+d\right)\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{a\left(b+d\right)}{b\left(b+d\right)}< \dfrac{b\left(a+c\right)}{b\left(b+d\right)}\\\dfrac{d\left(a+c\right)}{c\left(a+c\right)}< \dfrac{c\left(b+d\right)}{c\left(a+c\right)}\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{a}{b}< \dfrac{a+c}{b+d}\\\dfrac{d}{c}< \dfrac{b+d}{a+c}\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{a}{b}< \dfrac{a+c}{b+d}\\\dfrac{c}{d}>\dfrac{a+c}{b+d}\end{matrix}\right. \)