Cho a,b,c thoả mãn: a+b-c=2019.Chứng minh a^3+b^3-c^3 chia hết cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì BI vuông góc IK, CK vuông góc IK nên suy ra IB song song CK => BICK là hình thang
Xét hình thang BIKC có \(\widehat{BIK}+\widehat{IKC}=180^{0^{ }}\Rightarrow\widehat{IBC}+\widehat{BCK}=180^0\)
\(\Leftrightarrow\widehat{IBA}+\widehat{ACK}+\widehat{ABC}+\widehat{BCA}=180^0\)
\(\Rightarrow\widehat{IBA}+\widehat{ACK}=90^0\)Mà \(\widehat{IBA}+\widehat{IAB}=90^0\)và \(\widehat{ACK}+\widehat{KAC}=90^{0^{ }^{ }}\)
\(\widehat{IAB}=\widehat{KAC}\)(Chỗ này mình làm tắt nhưng đều là tính chất bắc cầu nhé)
\(\Rightarrow\Delta ABI=\Delta CAK\)(Cạnh huyền- góc nhọn)
\(\Rightarrow\hept{\begin{cases}IB=AK\\AI=CK\end{cases}}\)
Gọi M là trung điểm của KI => MI=MK mà BH=HC
nên suy ra MH là đường trung bình của hình thang BIKC
=> MH song song BI và CK
và MH= (IB+CK)/2 => 2MH=IB+CK (1)
Vì MH song song BI và CK => MH vuông góc IK => MH là đường cao trong tam giác KIH, mà MH đồng thời là trung tuyến (MI=MK) nên tam giác KIH cân tại H
Mặt khác ta có KI=AI+AK
<=> 2MK=CK+IB (2)
Từ (1) và (2) => MK=MH
Xét tam giác HIK cân tại H có MH=MK=IK/2 => tam giác HIK vuông cân tại H (đccm)
a,xét tam giác AMB và ANC có:MB=CN(gt)
tam giác AMN cân tại A(gt)=>AM=AN(đn)và góc AMN=góc ANM(tc)
=>tam giác AMB =tam giác ANC(c-g-c)
=>tam giác ABC cân tại A
b,tam giác AMB=tam giác ANC(cm trên)
góc ABM=góc ACN
góc ABM+góc MBH=180°
góc ACN +góc NCK=180°
=>góc MBH=góc NCK
xét tam giác MBH và NCK có MB=CN(gt)
góc MHB= góc CKN (MH vuông góc AB.NK vuông góc AC)(gt)
=>tam giác MBH=tam giác NCK (cạnh huyền-góc nhọn)
c, tam giác MBH= tam giác NCK (cm câu b)
=>góc BMH= góc CNK
=> tam giác MNO cân tại O
#Thiên#
a) ĐKXĐ : \(x\ne\pm5,x\ne0,x\ne\frac{5}{2}\)
Rút gọn :
Ta có : \(P=\left(\frac{x}{\left(x-5\right)\left(x+5\right)}-\frac{x-5}{x\left(x+5\right)}\right):\frac{5\left(2x-5\right)}{x\left(x+5\right)}+\frac{x}{5-x}\)
\(=\frac{x^2-\left(x-5\right)\left(x-5\right)}{x\left(x-5\right)\left(x+5\right)}:\frac{5\left(2x-5\right)}{x\left(x+5\right)}+\frac{x}{5-x}\)
\(=\frac{5\left(2x-5\right)}{x\left(x-5\right)\left(x+5\right)}\cdot\frac{x\left(x+5\right)}{5\left(2x-5\right)}+\frac{x}{5-x}\)
\(=\frac{1}{x-5}-\frac{x}{x-5}=\frac{1-x}{x-5}\)
Vậy : \(P=\frac{1-x}{x-5}\) với \(x\ne\pm5,x\ne0,x\ne\frac{5}{2}\)
b) Để \(P=2013\Leftrightarrow\frac{1-x}{x-5}=2013\)
\(\Leftrightarrow\frac{1-x}{x-5}-2013=0\)
\(\Leftrightarrow\frac{1-x-2013\left(x-5\right)}{x-5}=0\)
\(\Rightarrow10066-2014x=0\)
\(\Leftrightarrow2014x=10066\)
\(\Leftrightarrow x=\frac{10066}{2014}\approx4,999\)( thỏa mãn )
c) Để P là số nguyên \(\Leftrightarrow1-x⋮x-5\)
\(\Leftrightarrow-\left(x-5\right)-4⋮x-5\)
\(\Leftrightarrow4⋮x-5\)
\(\Leftrightarrow x-5\inƯ\left(4\right)\)
\(\Leftrightarrow x-5\in\left\{-1,1,-2,2,-4,4\right\}\)
\(\Leftrightarrow x\in\left\{4,6,3,7,1,9\right\}\) ( thỏa mãn ĐKXĐ và \(x\inℤ\) )
Vậy \(x\in\left\{4,6,3,7,1,9\right\}\) để P là số nguyên .
\(\left(x+2\right)^2-\left(x-2\right)^2=12\left(x^2-x\right)+8\)
\(\Leftrightarrow\left(x+2+x-2\right)\left(x+2-x+2\right)=12x^2-12x+8\)
\(\Leftrightarrow8x=12x^2-12x+8\)
\(\Leftrightarrow0=12x^2-20x+8\)
\(\Leftrightarrow3x^2-4x+2=0\left(\text{chia 2 vế cho 4}\right)\)
\(\text{Giải một hồi bạn sẽ có PTVN}\)
\(\text{À xin lỗi mk lộn ^_^}\)
\(\Leftrightarrow3x^2-5x+2=0\)
\(\Leftrightarrow3x^2-3x-2x+2=0\)
\(\Leftrightarrow3x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x-2\right)=0\)
\(\text{Hoặc }x-1=0\Leftrightarrow x=1\)
\(\text{Hoặc }3x-2=0\Leftrightarrow x=\frac{2}{3}\)
\(\text{Vậy }x=1\text{ hoặc }x=\frac{2}{3}\)