Cho tam giác ABC , đường trung tuyến AM , điểm I thuộc đoạn thẳng AM. Gọi E là giao điểm của BI và AC, F là giao điểm của CI và AB. Qua A kẻ đường thẳng song song với BC, cắt các đường thẳng BE và CF lần lượt tại H và K . CM : EF song song với BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
https://lazi.vn/edu/exercise/mot-hinh-chu-nhat-co-chu-vi-372m-neu-tang-chieu-dai-21m-va-tang-chieu-rong-10m-thi-dien-h-tang
xin thông cảm cho vi2mk k bt lm nên lên mạng ~ nên bn thông cảm cho nha !~ cảm ơn
Một HCN có chu vi 372m. Nếu tăng chiều dài thêm 21m và tăng chiều rộng thêm 10m thì diện tích tăng 2862m2. Tính chiều dài, chiều rộng của hcn ban đầu.
Giải:
Nửa chu vi hcn là : \(\frac{372}{2}\)= 186 (m)
Gọi x (m) là chiều rộng hcn ( x > 0 , x < 186 )
=> Chiều dài hcn là : 186 - x (m)
Chiều rộng hcn sau khi tăng : x + 10 (m)
Chiều dài hcn sau khi tăng : 186 - x + 21 (m)
Diện tích hcn lúc đầu : x(186 - x) (m22)
Diện tích hcn sau khi tăng : ( x + 10 )(186 - x +21) (m22)
Ta có pt:
x( 186 - x) + 2862 = (x+10)(186-x+21)
<=> 186x - x22= 2862 = (207 - x)(x + 10)
<=> 186x + 10x - x22+ x22- 207x = 2070 - 2862
<=> -11x = -792
<=> x = 72 (TMĐK)
Vậy chiều rộng của hcn là 72 (m).
Chiều dài hcn là 186 - 72 = 114 (m)
Học tốt!
\(\frac{x+7}{3}+\frac{x+5}{4}=\frac{x+3}{5}+\frac{x+1}{6}\)
\(\Leftrightarrow\left(\frac{x+7}{3}+2\right)+\left(\frac{x+5}{4}+2\right)=\left(\frac{x+3}{5}+2\right)+\left(\frac{x+1}{6}+2\right)\)
\(\Leftrightarrow\frac{x+13}{3}+\frac{x+13}{4}=\frac{x+13}{5}+\frac{x+13}{6}\)
\(\Leftrightarrow\frac{x+13}{3}+\frac{x+13}{4}-\frac{x+13}{5}-\frac{x+13}{6}=0\)
\(\Leftrightarrow\left(x+13\right)\left(\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\right)=0\)
\(\Rightarrow x+13=0\)( vì \(\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}\ne0\))
\(\Leftrightarrow x=-13\)
Vậy nghiệm của phương trình x=-13
a) \(x\left(2x^2-3\right)-x^2\left(5x+1\right)+x^2\)
\(=2x^3-3x-5x^3-x^2+x^2\)
\(=-3x^3-3x\)
b) \(3x\left(x-2\right)-5x\left(1-x\right)-8\left(x^2-3\right)\)
\(=3x^2-6x-5x+5x^2-8x^2+24\)
\(=-11x+24\)
\(9x^2-1=\left(3x-1\right)\left(2x-3\right)\)
\(\Leftrightarrow9x^2-1=6x^2-11x+3\)
\(\Leftrightarrow3x^2+11x-4=0\)
Ta có: \(\Delta=11^2+4.4.3=169,\sqrt{\Delta}=13\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{-11+13}{6}=\frac{1}{3}\\x=\frac{-11-13}{6}=-4\end{cases}}\)
Vậy tập nghiệm \(S=\left\{-4;\frac{1}{3}\right\}\)
\(2\left(9x^2+6x+1\right)=\left(3x+1\right)\left(x-2\right)\)
\(\Leftrightarrow2\left(3x+1\right)^2=\left(3x+1\right)\left(x-2\right)\)
\(\Leftrightarrow2\left(3x+1\right)^2-\left(3x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(6x+2-x+2\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(5x+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x+1=0\\5x+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{3}\\x=\frac{-4}{5}\end{cases}}\)
Vậy tập nghiệm \(S=\left\{\frac{-4}{5};\frac{-1}{3}\right\}\)
\(a\left(b-c\right)^2+b\left(c-a\right)^2+c\left(a-b\right)^2+8abc\)
\(=a\left(b^2-2bc+c^2\right)+b\left(c^2-2ac+a^2\right)+c\left(a^2-2ab+b^2\right)+8abc\)
\(=ab^2-2abc+ac^2+bc^2-2abc+ba^2+ca^2-2abc+cb^2+8abc\)
\(=ab^2+ac^2+bc^2+ba^2+ca^2+cb^2+2abc\)
\(=\left(ac^2+bc^2\right)+\left(ab^2+ba^2\right)+\left(ca^2+cb^2+2abc\right)\)
\(=c^2\left(a+b\right)+ab\left(a+b\right)+c\left(a^2+b^2+2ab\right)\)
\(=c^2\left(a+b\right)+ab\left(a+b\right)+c\left(a+b\right)^2\)
\(=\left(a+b\right)\left[c^2+ab+c\left(a+b\right)\right]=\left(a+b\right)\left(c^2+ab+ca+bc\right)\)
\(=\left(a+b\right)\left[\left(c^2+ca\right)+\left(ab+bc\right)\right]=\left(a+b\right)\left[c\left(c+a\right)+b\left(a+c\right)\right]\)
\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)