K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8

giúp mik vs gấp lắm r

 

4 tháng 8

1)

\(a,-9-9\left(-5\right)\\ =-9+45\\ =36\\ b,-5-\left(-12\right)\\ =-5+12\\ =7\)

2) 

\(A=-7x+3-15x+8\\ =\left(-7x-15x\right)+\left(3+8\right)\\ =x\cdot\left(-7-15\right)+11\\ =-22x+11\)

4 tháng 8

\(x^3-8y^3+7=0\\ =>x^3-\left(2y\right)^3=-7\\ =>\left(x-2y\right)\left(x^2+2xy+4y^2\right)=-7\)

Vì x,y nguyên nên: 

TH1: \(\left\{{}\begin{matrix}x-2y=1\\x^2+2xy+4y^2=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2y=1\\\left(x-2y\right)^2+6xy=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2y=1\\xy=-\dfrac{4}{3}\end{matrix}\right.\) (loại vì x,y nguyên => xy nguyên)  

\(TH2:\left\{{}\begin{matrix}x-2y=7\\x^2+2xy+4y^2=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2y=7\\\left(x-2y\right)^2+6xy=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2y=7\\xy=-\dfrac{25}{3}\end{matrix}\right.\) (loại vì x,y nguyên => xy nguyên) 

TH3: \(\left\{{}\begin{matrix}x-2y=-1\\x^2+2xy+4y^2=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2y=-1\\\left(x-2y\right)^2+6xy=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2y=-1\\xy=1\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}x=2y-1\\\left(2y-1\right)y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2y-1\\2y^2-y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2y-1\\\left(y-1\right)\left(2y+1\right)=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=2\cdot1-1=1\\\left[{}\begin{matrix}y=1\left(tm\right)\\y=-\dfrac{1}{2}\left(ktm\right)\end{matrix}\right.\end{matrix}\right.\) 

TH4: \(\left\{{}\begin{matrix}x-2y=-7\\x^2+2xy+4y^2=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2y=-7\\\left(x-2y\right)^2+6xy=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2y=-7\\xy=-8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2y-7\\\left(2y-7\right)y=-8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2y-7\\2y^2-7y+8=0\end{matrix}\right.\Leftrightarrow x,y\in\varnothing\)

Vậy: x = 1 và y = 1 

NV
4 tháng 8

Đặt \(P=x^3+y^3+z^3-3xyz\)

\(=x^3+\left(y+z\right)^3-3yz\left(y+z\right)-3xyz\)

\(=\left(x+y+z\right)\left[x^2-x\left(y+z\right)+\left(y+z\right)^2\right]-3yz\left(x+y+z\right)\)

\(=3\left(x^2+y^2+z^2+2yz-xy-xz\right)-9yz\)

\(=3\left(x^2+y^2+z^2-xy-yz-zx\right)\)

\(=3\left[\left(x+y+z\right)^2-3\left(xy+yz+zx\right)\right]\)

\(=3\left[9-3\left(xy+yz+zx\right)\right]\)

Do \(0\le x,y,z\le2\Rightarrow\left(2-x\right)\left(2-y\right)\left(2-z\right)\ge0\)

\(\Rightarrow xyz+\left(2-x\right)\left(2-y\right)\left(2-z\right)\ge0\)

\(\Rightarrow2\left(xy+yz+zx\right)-4\left(x+y+z\right)+8\ge0\)

\(\Rightarrow2\left(xy+yz+zx\right)\ge4.3-8=4\)

\(\Rightarrow xy+yz+zx\ge2\)

\(\Rightarrow P\le3.\left[9-3.2\right]=9\)

\(P_{max}=9\) khi \(\left(x;y;z\right)=\left(0;1;2\right)\) và các hoán vị của chúng

NV
4 tháng 8

Với điều kiện đề bài \(0< x,y,z< 2\) thì biểu thức ko tồn tại GTLN

Biểu thức chỉ tồn tại GTLN khi \(0\le x,y,z\le2\) (có dấu = ở biên)

NV
4 tháng 8

\(\Leftrightarrow\left(4x^2y^2+4xy+1\right)+\left(x^2-6x+9\right)=1\)

\(\Leftrightarrow\left(2xy+1\right)^2+\left(x-3\right)^2=1\)

Do \(2xy+1\) luôn lẻ với mọi x;y nguyên \(\Rightarrow2xy+1\ne0\Rightarrow\left(2xy+1\right)^2\ge1;\forall x;y\)

\(\Rightarrow\left(2xy+1\right)^2+\left(x-3\right)^2\ge1;\forall x;y\)

Đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}\left(2xy+1\right)^2=1\\\left(x-3\right)^2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\y=0\end{matrix}\right.\)

NV
4 tháng 8

Xác suất đúng của mỗi đáp án là: \(\dfrac{1}{4}\)

Xác suất cả 2 câu đều đúng là: \(\dfrac{1}{4}.\dfrac{1}{4}=\dfrac{1}{16}\)

NV
4 tháng 8

Đề đúng ko em, chỗ \(x^2y^2\) dính liền ấy? Hỏi lại cho chắc ăn.

4 tháng 8

Dạ, đề đúng rồi ạ.

NV
4 tháng 8

\(4x^2+12xy+9y^2-8\left(2x+3y\right)-y^2+2y-1+15=0\)

\(\Leftrightarrow\left(2x+3y\right)^2-8\left(2x+3y\right)+16-\left(y-1\right)^2=1\)

\(\Leftrightarrow\left(2x+3y-4\right)^2-\left(y-1\right)^2=1\)

\(\Leftrightarrow\left(2x+4y-5\right)\left(2x+2y-3\right)=1\)

TH1: \(\left\{{}\begin{matrix}2x+4y-5=1\\2x+2y-3=1\end{matrix}\right.\) \(\Rightarrow x;y=...\)

TH2: \(\left\{{}\begin{matrix}2x+4y-5=-1\\2x+2y-3=-1\end{matrix}\right.\) \(\Rightarrow x;y=...\)

NV
4 tháng 8

\(6k+5\)Do \(p;q>5\Rightarrow p;q\) đều là số lẻ ko chia hết cho 3

\(\Rightarrow p;q\) có dạng \(6k+1\) hoặc \(6k+5\)

Mặt khác \(p< q< p+6\Rightarrow0< q-p< 6\)

\(\Rightarrow q-p\) không chia hết cho 6

\(\Rightarrow q;p\) không thể có cùng dạng \(6k+1\) hoặc cùng dạng \(6k+5\)

\(\Rightarrow\) 1 số có dạng \(6k+1\) và 1 số có dạng \(6k+5\)

Hay 1 số chia 6 dư 1, một số chia 6 dư 5

\(\Rightarrow p+q\) chia 6 dư 0

\(\Rightarrow p+q⋮6\)

NV
4 tháng 8

\(3x^2+6xy+3y^2-12\left(x+y\right)+4y^2-8y+4-4=0\)

\(\Leftrightarrow3\left(x+y\right)^2-12\left(x+y\right)+12+4\left(y-1\right)^2=16\)

\(\Leftrightarrow3\left(x+y-2\right)^2+4\left(y-1\right)^2=16\) (1)

Do \(3\left(x+y-2\right)^2\ge0;\forall x;y\)

\(\Rightarrow4\left(y-1\right)^2\le16\Rightarrow\left(y-1\right)^2\le4\)

\(\Rightarrow\left(y-1\right)^2=\left\{0;1;4\right\}\)

\(\Rightarrow y=\left\{1;0;2;3;-1\right\}\)

Thế vào (1)

Với \(y=-1\Rightarrow3\left(x-3\right)^2=0\Rightarrow x=3\)

Với \(y=0\Rightarrow3\left(x-2\right)^2=12\Rightarrow x=\left\{0;4\right\}\)

Với \(y=1\Rightarrow...\) các trường hợp còn lại em tự giải tương tự

NV
4 tháng 8

Đề bài yêu cầu gì em?