Cho 2023m^2+m = 2022n^2+n (vs m, n thuộc N). Chứng minh rằng 2023(m+n) + 1 là số chính phương.
Mọi người giúp tớ với. Bài này là bài của hsg lớp 9 năm 2018 của tỉnh nào đó nên chắc ko có trên mạng đâu.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\ne-1;y\ne3\)
Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x+1}=u\\\dfrac{1}{y-3}=v\end{matrix}\right.\) ta được hệ:
\(\left\{{}\begin{matrix}u-2v=-\dfrac{1}{2}\\3u+v=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}u-2v=-\dfrac{1}{2}\\6u+2v=4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}u-2v=-\dfrac{1}{2}\\7u=\dfrac{7}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u=\dfrac{1}{2}\\v=\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x+1}=\dfrac{1}{2}\\\dfrac{1}{y-3}=\dfrac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x+1=2\\y-3=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+1=a\left(a\ne0\right)\\y-3=b\left(b\ne0\right)\end{matrix}\right.\)
Hệ pt trở thành \(\left\{{}\begin{matrix}\dfrac{1}{a}-\dfrac{2}{b}=-\dfrac{1}{2}\\\dfrac{3}{a}+\dfrac{1}{b}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{a}-\dfrac{2}{b}=-\dfrac{1}{2}\\\dfrac{6}{a}+\dfrac{2}{b}=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{7}{a}=\dfrac{7}{2}\\\dfrac{1}{a}-\dfrac{2}{b}=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=2\left(tm\right)\\\dfrac{1}{2}-\dfrac{2}{b}=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=2\left(tm\right)\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x+1=2\\y-3=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\)
Vậy x=1;y=5
có tam giác ABC đều (gt)
=> góc A = góc B = góc C (đn) (1)
AB = AC = BC
AB = BM + MA
AC = AN + NC
BC = BE + CE
mà BE = CN = AM (gt) (2)
=> BM = AN = CE (3)
(1)(2)(3) => tam giác AMN = tam giác CNE = tam giác BEM (c - g - c)
=> MN = NE = EM
=> tam giác MEN đều
a, R' ≥ 2 ≤ 6
b, R' = 2 cm
c, R' = 1 cm
Mong giúp ích cho bn !
Ta có 2023m2 + m = 2022n2 + n
<=> n2 = 2023n2 + n - 2023m2 - m
<=> n2 = 2023(n2 - m2) + (n - m)
<=> n2 = (n - m)[2023(n + m) + 1] (*)
Đặt (n - m ; 2023(n + m) + 1) = d (\(d\inℕ^∗\))
=> \(\left\{{}\begin{matrix}n-m⋮d\\2023.\left(n+m\right)+1⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}n-m⋮d\\\left(n-m\right).\left[2023.\left(n+m\right)+1\right]⋮d^2\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}n-m⋮d\\n^2⋮d^2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}n-m⋮d\\n⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}n⋮d\\m⋮d\end{matrix}\right.\) (1)
Lại có 2023(n + m) + 1 \(⋮d\) (2)
Từ (1) và (2) => d = 1
=> (n - m ; 2023(n + m) + 1) = 1 (3)
Từ (*) và (3) => 2023(n + m) + 1 là số chính phương