Tính
\(a)\frac{7x+2}{5xy^3}.\frac{x^2y^3}{21+6}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2=x+y\ge2\sqrt{xy}\)(cô - si)
\(\Rightarrow\sqrt{xy}\le1\Rightarrow xy\le1\)
Ta có \(S=x^2+y^2=\left(x+y\right)^2-2xy\)
\(=4-2xy\ge4-2=2\)
Dấu "=" khi x = y = 1
Ta có: \(\left(x-y\right)^2\ge0\)\(\Leftrightarrow x^2-2xy+y^2\ge0\)
\(\Leftrightarrow x^2+y^2\ge2xy\)\(\Leftrightarrow2\left(x^2+y^2\right)\ge x^2+y^2+2xy\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)\(\Leftrightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)
Thay \(x+y=2\)vào bất phương trình ta được:\(x^2+y^2\ge\frac{2^2}{2}=\frac{4}{2}=2\)
Dấu " = " xảy ra \(\Leftrightarrow x-y=0\)\(\Leftrightarrow x=y\)
mà \(x+y=2\)\(\Rightarrow x=y=1\)
Vậy \(minS=2\)\(\Leftrightarrow x=y=1\)
Ta có \(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\cdot\cdot\cdot\left(3^{64}+1\right)\)
\(\Rightarrow2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\cdot\cdot\cdot\left(3^{64}+1\right)\)
\(=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\cdot\cdot\cdot\left(3^{64}+1\right)\)
\(=\left(3^4-1\right)\left(3^4+1\right)\cdot\cdot\cdot\left(3^{64}+1\right)\)
\(=\left(3^{64}-1\right)\left(3^{64}+1\right)=\left(3^{128}-1\right)\)
\(\Rightarrow A=\frac{3^{128}-1}{2}\)
\(ĐKXĐ:x\ne0;x\ne-3;x\ne-6;x\ne-9\)
\(\frac{1}{x^2+3x}+\frac{1}{x^2+9x+18}+\frac{1}{x^2+15x+54}=\frac{3}{10}\)
\(\Leftrightarrow\frac{1}{x\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+6\right)}+\frac{1}{\left(x+6\right)\left(x+9\right)}=\frac{3}{10}\)
\(\Leftrightarrow\frac{1}{3}\left(\frac{3}{x\left(x+3\right)}+\frac{3}{\left(x+3\right)\left(x+6\right)}+\frac{3}{\left(x+6\right)\left(x+9\right)}\right)=\frac{3}{10}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+9}=\frac{9}{10}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+9}=\frac{9}{10}\)
\(\Leftrightarrow\frac{9}{x\left(x+9\right)}=\frac{9}{10}\)
\(\Leftrightarrow x^2+9x-10=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+10\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-10\end{cases}\left(tm\right)}\)
O.O chắc ko
\(\frac{1}{x^2+3x}+\frac{1}{x^2+9x+18}+\frac{1}{x^2+15x+54}=\frac{3}{10}\)\(ĐKXĐ:x\ne-3;-6\)
\(\frac{1}{x\left(x+3\right)}+\frac{1}{x^2+9x+18}+\frac{1}{x^2+15x+54}=\frac{3}{10}\)
\(\frac{1}{x\left(x+3\right)}+\frac{1}{\left(x+3\right)\left(x+6\right)}+\frac{1}{x^2+15x+54}=\frac{3}{10}\)
\(10\left(x+6\right)\left(x+9\right)+10x\left(x+9\right)+10x\left(x+3\right)=3x\left(x+3\right)\left(x+6\right)\left(x+9\right)\)
\(30x^2+270x+540=3x^4+54x^3+297x^2+486x\)
\(30x^2+270x+540-3x^4-54x^3-297x^2-486x=0\)
\(-3\left(89x^2+72x-180+x^4+18x^3\right)=0\)
\(-3\left(x^2+16x+60\right)\left(x-1\right)=0\)
\(-3\left(x+6\right)\left(x+10\right)\left(x+3\right)\left(x-1\right)=0\)
\(\left(x+6\right)\left(x+10\right)\left(x+3\right)\left(x-1\right)=0\)
\(x=-10,1\)
a, CM: AD//AB=AE//AC
Xét tam giác ABC có:
AD//AB vì đề bài cho cạnh BC lấy D ( lấy sao cho AD=AB)
AE//AC vì đề bài cho cạnh AC lấy E ( lấy sao cho AE=AC)
VÌ ĐỀU CHUNG MỘT TAM GIÁC NÊN 3 CẠNH = NHAU
\(\Rightarrow\) AD/AB=AE/AC.
b, AB = 2cm vì AD= 2cm( AD//AB \(\Rightarrow=\)nhau và = 2 cm)
đêm hôm khuya khoắt đăng lên lm j :v
\(\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(=\left(a+b+c-a\right)\left(3x^2+b^2+c^2+3ab+2bc+3ac\right)-\left(b^3+c^3\right)\)
\(=\left(3a^2+b^2+c^2+3ab+2ac-b^2+bc-c^2\right)\left(b+c\right)\)
\(=\left(3a^2+3ab+3ac+3bc\right)\left(b+c\right)\)
\(=3\left(a+b\right)\left(a+c\right)\left(b+c\right)\)
\(\frac{2x-1}{x^2+1}=\frac{2}{x^2-x+1}-\frac{1}{x+1}\)đề như này hả , hay thế nào ==
\(\left(2x-1\right)\left(x^2-x+1\right)\left(x+1\right)=2\left(x^2+1\right)\left(x+1\right)-\left(x^2+1\right)\left(x^2-x+1\right)\)
\(2x^4-x^3-2x-1=3x^3+3x+1-x^4\)
\(2x^4-x^3-2x-1-3x^3-3x-1+x^4=0\)
\(3x^4-4x^3-x-2=0\)
\(x=-0.618034;1.618034\)( đù -.- ra lắm :v )
Ta có : \(x.\left(x+1\right)-2x=0\)
\(\Leftrightarrow2x+x-2x=0\)
\(\Leftrightarrow x=0\)
Vậy x=0
hok tốt!!
Mình nghĩ đề như này
\(\frac{7x+2}{5xy^3}.\frac{x^2y^3}{21x+6}\)
\(=\frac{7x+2}{5}.\frac{x}{3\left(7x+2\right)}\)
\(=\frac{x}{15}\)
Hì...sorry tui bấm thiếu.
Cảm ơn bạn
Trong 3 ngày liên tiếp tui sẽ k cho bạn