Cho a b thoa man 2a+b=2. Chung minh\(ab\le\frac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x2 + 6x + 5)(x2 - 10x + 21) - 20
= (x2 + x + 5x + 5)(x2 - 3x - 7x + 21) - 20
= (x + 1)(x + 5)(x - 3)(x - 7) - 20
= (x2 -2x - 3)(x2 - 2x- 35) - 20
Đặt x2 - 2x - 19 = a
=> (a + 16)(a - 16) - 20 = a2 - 256 - 20 = a2 - 276
= \(\left(a-2\sqrt{69}\right)\left(a+2\sqrt{69}\right)\)
= \(\left(a^2-2x-19-2\sqrt{69}\right)\left(x^2-2x-19+2\sqrt{69}\right)\)
Gọi thời gian dự định đi hết quãng đường là x.
Độ dài quãng đường AB là: S = v.t = 40x
Nửa quãng đường là S/2 = 40x/2 = 20x.
Nửa quãng đường đầu đi vs vtốc dự định (40km/h)
=> Thời gian đi hết nửa quãng đường đầu là: t1 = S : v1 = 20x : 40 = 1/2x
Nửa quãng đường đầu đi vs vtốc tăng hơn dự định 10km/h (50km/h)
=> Thời gian đi hết nửa quãng đường sau là t2 = S : v2 = 20x : 50 = 2/5x
Tổng thời gian đi hết quãng đường là: t = t1 + t2 = 1/2x + 2/5x = 9/10x
Do thực tế đến B sớm hơn dự kiến 1h nên ta có: x - 9/10x = 1 => x = 10 (h)
=> Độ dài quãng đường AB là S = 40.10 = 400 (km).
\(ĐKXĐ:x\ne\pm3\)
Đặt \(\frac{x+2}{x-3}=a;\frac{x-2}{x+3}=b\)
Ta có:
\(pt\Leftrightarrow3a^2+8ab=3b^2\)
\(\Leftrightarrow3a^2+8ab-3b^2=0\)
\(\Leftrightarrow\left(3a-b\right)\left(3b+a\right)=0\)
\(\Leftrightarrow3a=b;3b=-a\)
Đến đây bạn thay vào làm nhá,giải như pt bậc 2 thôi
\(\left(\frac{x-1}{x+2}\right)^2-4\left(\frac{x^2-1}{x^2-4}\right)^2+3\left(\frac{x+1}{x-2}\right)^2=0\left(1\right)\)
\(ĐKXĐ:x\ne\pm2\)
Đặt \(\frac{x-1}{x+2}=a;\frac{x+1}{x-2}=b\)
=> Phương trình (1) <=> \(a^2-4ab+3b^2=0\)
\(\Leftrightarrow a^2-3ab-ab+3b^2=0\)
\(\Leftrightarrow a\left(a-b\right)-3b\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-3b\right)\left(a-b\right)=0\)
\(\Leftrightarrow\left(a-3b\right)\left(a-b\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}a-3b=0\\a-b=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=3b\\a=b\end{cases}}}\)
=> \(b=0;a=0\)
Bạn cùng trường :">
(3x - 2)(2x + 1) = (2x - 1)(2x + 1)
(2x + 1)(3x -2 -2x +1) = 0
(2x + 1)(x - 1)= 0
(3x-2).(2x+1)=(2x+1)2
<=> (3x-2).(2x+1)-(2x+1)2=0
<=> (2x+1)(3x-2-2x-1)=0
<=> 2x+1=0 hoac x-3=0
<=> x=1/2 hoac x=3
\(A=\left(\frac{2}{x+2}-\frac{4}{x^2+4x+4}\right):\left(\frac{2}{x^2-4}+\frac{1}{2-x}\right)\)
\(A=\left[\frac{2\left(x+2\right)}{\left(x+2\right)^2}-\frac{4}{\left(x+2\right)^2}\right]:\left(\frac{2}{x^2-4}-\frac{x+2}{x^2-4}\right)\)
\(A=\frac{2x+4-4}{\left(x+2\right)^2}:\frac{2-x-2}{x^2-4}\)
\(A=\frac{2x}{\left(x+2\right)^2}.\frac{x^2-4}{-x}=\frac{2\left(x-2\right)}{-\left(x+2\right)}=\frac{-2\left(x-2\right)}{x+2}\)
\(\frac{x+2}{x+3}-\frac{x+1}{x-1}=\frac{4}{\left(x-1\right)\left(x+3\right)}\left(x\ne-3;x\ne1\right)\)
\(\Leftrightarrow\frac{x+2}{x+3}-\frac{x+1}{x-1}-\frac{4}{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(x-1\right)}{\left(x+3\right)\left(x-1\right)}-\frac{\left(x+1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\frac{4}{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{x^2+x-2}{\left(x+3\right)\left(x-1\right)}-\frac{x^2+4x+3}{\left(x-1\right)\left(x+3\right)}-\frac{4}{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{x^2+x-2-x^2-4x-3-4}{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{-3x-9}{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{-3\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\frac{-3}{x-1}=0\)
=> PT vô nghiệm
Áp dụng bđt cô - si, ta được:
\(2=2a+b\ge2\sqrt{2ab}\)
\(\Rightarrow\sqrt{ab}\le\frac{2}{2\sqrt{2}}\Rightarrow ab\le\frac{1}{2}\)
Dấu "=" \(\Leftrightarrow\) \(a=\frac{1}{2};b=1\)
Áp dụng BĐT phụ thường gặp \(xy\le\frac{\left(x+y\right)^2}{4}\)
\(2ab\le\frac{\left(2a+b\right)^2}{4}=\frac{4}{4}=1\Rightarrow ab\le\frac{1}{2}\)
Dấu "=" xảy ra tại \(a=\frac{1}{2};b=1\)