Giải HPT \(\hept{\begin{cases}2x^2+y^2-4x+2y=1\\3x^2-2y^2-6x-4y=5\end{cases}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Có AH2=HF.HD \(\rightarrow\)\(\frac{AH}{HF}=\frac{HD}{AH}\)
Xét \(\Delta\)AHD và \(\Delta\)FHA có:
\(\widehat{AHD}=\widehat{FHA}=90^o\)
\(\frac{AH}{HF}=\frac{HD}{AH}\)( chứng minh trên)
\(\rightarrow\Delta\)AHD\(\approx\)\(\Delta\)FHA (c-g-c)
\(\rightarrow\)\(\widehat{ADH}=\widehat{FAH}\)( 2 góc tương ứng)
mà \(\widehat{ADH}+\widehat{HAD}=90^o\)
nên \(\widehat{FAH}+\widehat{HAD}=90^o\)
hay \(\widehat{FAD}=90^o\)\(\rightarrow\Delta\)ADF vuông tại A
b)\(\sqrt{17-12\sqrt{2}}\)
=\(\sqrt{9-2.3.2\sqrt{2}+8}\)
=\(\sqrt{\left(3-2\sqrt{2}\right)^2}\)
= \(3-2\sqrt{2}\)
Câu 1. Biến đổi biểu thức trong căn thành một bình phương một tổng hay một hiệu rồi từ đó phá bớt một lớp căn
a/\(\sqrt{41+12\sqrt{5}}\)
Xét tam giác AHB đồng dạng với tam giác CHA góc-góc ( góc AHB=góc CHA; góc BAH = góc C do cùng phụ với góc B)
=> k= AH/HC=AB/AC=HB/AH
AB/AC=5/7
=>AB/AC=HB/AH hay 5/7=HB/15 -> HB = 75/7
AH/HC=AB/AC hay 15/HC=5/7 -> HC =21
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\Leftrightarrow\frac{ab+bc+ac}{abc}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\left(ab+bc+ac\right)\left(a+b+c\right)=abc\)
\(\Leftrightarrow\left(ab+bc+ac\right)\left(a+b\right)+abc+bc^2+ac^2-abc=0\)
\(\Leftrightarrow\left(ab+bc+ac\right)\left(a+b\right)+c^2\left(a+b\right)=0\)
\(\Leftrightarrow\left(ab+bc+ac+c^2\right)\left(a+b\right)=0\)
\(\Leftrightarrow\left[\left(a+c\right)b+c\left(a+c\right)\right]\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
Còn lại bn tự làm tiếp nhé!
Ta có DB/AB = DC/AC =>3/AB=4/AC => 4AB=3AC => AB=3/4 AC
ta lại có BC=3+4=7 cm
tam giác ABC vuông tại A, theo định lí pitago, ta có BC^2 = AB^2 + AC^2
=> 49= 9/16AC^2 + AC^2 => AC=28/5 => AB=21/5
Hệ phương trình tương đương \(\hept{\begin{cases}4x^2+2y^2-8x+4y=2\\3x^2-2y^2-6x-4y=5\end{cases}}\)
Cộng vế theo vế ta có phương trình:
\(7x^2-14x=7\Leftrightarrow7x^2-14x-7=0\)