Giải phương trình
\(\frac{2x-5}{x-2}-\frac{3x-5}{x-1}=-1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BD=√AB2+AD2=√62+82=10 (cm)
BE=√AB2+AE2=√62+62=6√2 (cm)
ED=√AD2+AE2=√82+62=10)
⇒⇒ Chu vi ΔBED=BD+BE+ED=20+6√2≈28,49 (cm)
\(\frac{2x}{x-2}-\frac{5}{x+2}=\frac{x^2+12}{x^2-4}\)
\(\Leftrightarrow\frac{2x\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{x^2+12}{\left(x+2\right)\left(x-2\right)}\)
\(\Rightarrow2x\left(x+2\right)-5\left(x-2\right)=x^2+12\)
\(\Leftrightarrow2x^2+4x-5x+10=x^2+12\)
\(\Leftrightarrow2x^2+4x-5x+10-x^2-12=0\)
\(\Leftrightarrow x^2-x-2=0\)
\(\Leftrightarrow x^2+x-2x-2=0\)
\(\Leftrightarrow\left(x^2+x\right)-\left(2x+2\right)=0\)
\(\Leftrightarrow x\left(x+1\right)-2\left(x+1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\orbr{\begin{cases}x-2=0\Leftrightarrow x=2\\x+1=0\Leftrightarrow x=-1\end{cases}}\)
Vậy tập nghiệm của phương trình là S={2;-1}
ĐKXĐ: \(x\ne\pm2\)
\(\frac{2x}{x-2}-\frac{5}{x+2}=\frac{x^2+12}{x^2-4}\)
<=> \(\frac{2x}{x-2}-\frac{5}{x+2}=\frac{x^2+12}{\left(x-2\right)\left(x+2\right)}\)
<=> 2x(x + 2) - 5(x - 2) = x2 + 12
<=> 2x2 + 4x - 5x + 10 = x2 + 12
<=> 2x2 - x + 10 = x2 + 12
<=> 2x2 - x + 10 - x2 - 12 = 0
<=> x2 - x - 2 = 0
<=> (x - 2)(x + 1) = 0
<=> x - 2 = 0 hoặc x + 1 = 0
<=> x = 2 (ktm) hoặc x = -1 (tm)
=> x = -1
x(x-1)=x(x+3)
<=> x^2-x=x^2+3x
<=> x^2-x-x^2-3x=0
<=> -4x=0
<=> x=0
(x-1)(x+3)=x^2-4
<=> x^2+3x-x-3=x^2-4
<=> x^2+2x-3=x^2-4
<=> x^2-x^2+2x=-4+3
<=> 2x=-1
<=> x=-1/2
(x-2)(x-5)=(x-3)(x-4)
<=> x^2-7x+10=x^2-7x+12
<=> x^2-7x-x^2+7x=12-10
<=> 0x=2(vô nghiệm)
a) ĐKXĐ: \(x\ne0;x\ne5\)
b) \(P=\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)
\(P=\frac{x^2+2x}{2\left(x+5\right)}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)
\(P=\frac{x\left(x^2+2x\right)}{2x\left(x+5\right)}+\frac{2\left(x+5\right)\left(x-5\right)}{2x\left(x+5\right)}+\frac{50-5x}{2x\left(x+5\right)}\)
\(P=\frac{x\left(x^2+2x\right)+2\left(x+5\right)\left(x-5\right)+50-5x}{2x\left(x+5\right)}\)
\(P=\frac{x\left(x^2-5+4x\right)}{2x\left(x+5\right)}\)
\(P=\frac{x^2-5x+4}{2\left(x+5\right)}\)
\(P=\frac{\left(x-1\right)\left(x+5\right)}{2\left(x+5\right)}\)
\(P=\frac{x-1}{2}\)
c) +) P = 0
\(\frac{x-1}{2}=0\)
<=> x - 1 = 0
<=> x = 1
+) P = 1/4
\(\frac{x-1}{2}=\frac{1}{4}\)
<=> 4(x - 1) = 2.1
<=> 4x - 4 = 2
<=> 4x = 2 + 4
<=> 4x = 6
<=> x = 6/4 = 3/2
x2+2x-4=-12+3x+x2
<=> x2-x2+2x-3x=-12+4 (chuyển vế đổi dấu)
<=>-x=-8
<=>x=8
nhớ k cho mik đó nhoa
\(\frac{2x-5}{x-2}-\frac{3x-5}{x-1}=-1\)
\(\Leftrightarrow\frac{\left(2x-5\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)}-\frac{\left(3x-5\right)\left(x-2\right)}{\left(x-2\right)\left(x-1\right)}=-\frac{\left(x-2\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)}\)
\(\Leftrightarrow\left(2x-5\right)\left(x-1\right)-\left(3x-5\right)\left(x-2\right)=-\left(x-2\right)\left(x-1\right)\)
\(\Leftrightarrow2x^2-2x-5x+5-3x^2+6x+5x-10=-x^2+x+2x-2\)
\(\Leftrightarrow2x^2-2x-5x+5-3x^2+6x+5x-10+x^2-x-2x+2=0\)
\(\Leftrightarrow x=0\)
Vậy tập nghiệm của pt là S={0}
E muốn show cách mới nghĩ ra nhưng sợ sai nên e lm cách này cho chắc
\(\frac{2x-5}{x-5}-\frac{3x-5}{x-1}=-1\)
\(\Leftrightarrow\frac{\left(2x-5\right)\left(x-1\right)}{\left(x-2\right)\left(x-1\right)}-\frac{\left(3x-5\right)\left(x-2\right)}{\left(x-1\right)\left(x-2\right)}=-1\)
\(\Leftrightarrow\left(2x-5\right)\left(x-1\right)-\left(3x-5\right)\left(x-2\right)=-1\)
\(\Leftrightarrow-x^2+4x-5=-1\)
\(\Leftrightarrow x^2-4x+4=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy pt cs nghiệm { 2 }