Chứng minh rằng
(7^6+7^5-7^4) chia hết cho 77
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
\(\Leftrightarrow\sqrt{2x^2+5x+3}=-x-3\)
\(\Leftrightarrow\left\{{}\begin{matrix}-x-3\ge0\\2x^2+5x+3=\left(-x-3\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le-3\\2x^2+5x+3=x^2+6x+9\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le-3\\x^2-x-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le-3\\\left[{}\begin{matrix}x=3\left(loại\right)\\x=-2\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy pt vô nghiệm
b.
\(\Leftrightarrow\sqrt{2x^2+x+3}=1-x\)
\(\Leftrightarrow\left\{{}\begin{matrix}1-x\ge0\\2x^2+x+3=\left(1-x\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\2x^2+x+3=1-2x+x^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\x^2+3x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le1\\\left[{}\begin{matrix}x=-1\left(loại\right)\\x=-2\left(loại\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy pt vô nghiệm
\(\Leftrightarrow\left(x+5\right)^2-9\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x+5-9\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-5\\x=4\end{matrix}\right.\)
\(\left(x+5\right)^2-9x-45x=0\\ < =>\left(x^2+10x+25\right)-54x=0\\ < =>x^2+10x+25-54x=0\\ < =>x^2-44x+25=0\\ < =>\left(x^2-44x+484\right)-459=0\\ < =>\left(x-22\right)^2-459=0\\ < =>\left(x-22\right)^2=459\\ < =>\left[{}\begin{matrix}x-22=\sqrt{459}\\x-22=-\sqrt{459}\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=22+\sqrt{459}\\x=22-\sqrt{459}\end{matrix}\right.\)
a: Xét ΔMNP có \(\dfrac{MH}{MN}=\dfrac{MK}{MP}\)
nên HK//PN
Xét tứ giác NHKP có HK//NP
nên NHKP là hình thang
Hình thang NHKP có \(\widehat{HNP}=\widehat{KPN}\)(ΔMNP cân tại M)
nên NHKP là hình thang cân
`2x + 3x + 1 - 4x + 2 = 36`
`=> (2+3-4) x + 3 = 36`
`=> x + 3 = 36`
`=> x = 36-3`
`=> x = 33`
\(5^7-5^6+5^5\\ =5^5\cdot5^2-5^5\cdot5+5^5\\ =5^5\cdot\left(5^2-5+1\right)\\ =5^5\cdot\left(25-5+1\right)\\ =5^5\cdot21⋮21\)
=> `5^7-5^6+5^5` chia hết cho 21
`5^7 - 5^6 + 5^5`
`= 5^5 . (5^2 - 5 + 1)`
`= 5^5 . (25 - 5 + 1)`
`= 5^5 . 21 vdots 21 (đpcm)`
a: Thay m=3 vào hệ, ta được:
\(\left\{{}\begin{matrix}3x+2y=1\\3x+\left(3+1\right)y=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3x+2y=1\\3x+4y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+4y-3x-2y=-1-1\\3x+2y=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}2y=-2\\3x=1-2y=1-\left(-2\right)=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=1\end{matrix}\right.\)
b:
để hệ có vô số nghiệm thì \(\dfrac{m}{3}=\dfrac{2}{m+1}=\dfrac{1}{-1}\)
=>\(\left\{{}\begin{matrix}m^2+m=6\\m+1=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m+3\right)\left(m-2\right)=0\\m=-3\end{matrix}\right.\)
=>m=-3
Để hệ vô nghiệm thì \(\dfrac{m}{3}=\dfrac{2}{m+1}\ne\dfrac{1}{-1}=-1\)
=>\(\left\{{}\begin{matrix}m^2+m=6\\m+1\ne-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(m+3\right)\left(m-2\right)=0\\m\ne-3\end{matrix}\right.\)
=>m=2
Để hệ có nghiệm duy nhất thì \(\dfrac{m}{3}\ne\dfrac{2}{m+1}\)
=>\(m^2+m\ne6\)
=>\(m^2+m-6\ne0\)
=>(m+3)(m-2)<>0
=>\(m\notin\left\{-3;2\right\}\)
\(\left\{{}\begin{matrix}mx+2y=1\\3x+\left(m+1\right)y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3mx+6y=3\\3mx+\left(m^2+m\right)y=-m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}3mx+\left(m^2+m\right)y-3mx-6y=-m-3\\mx+2y=1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y\left(m+3\right)\left(m-2\right)=-\left(m+3\right)\\mx+2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-1}{m-2}\\mx=1-2y=1+\dfrac{2}{m-2}=\dfrac{m-2+2}{m-2}=\dfrac{m}{m-2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-\dfrac{1}{m-2}\\x=\dfrac{1}{m-2}\end{matrix}\right.\)
c: Để hệ có nghiệm duy nhất là số nguyên thì \(\left\{{}\begin{matrix}m\in\left\{-3;2\right\}\\m-2\inƯC\left(1;-1\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m\in\left\{-3;2\right\}\\m-2\in\left\{1;-1\right\}\end{matrix}\right.\)
=>\(m\in\left\{3;1\right\}\)
Do 8 chia hết cho 4 \(\Rightarrow8^{2008}⋮4\)
\(\Rightarrow8^{2008}=4k\)
\(\Rightarrow5^{8^{2008}}=5^{4k}=\left(5^4\right)^k=625^k\)
Mà \(625\equiv1\left(mod24\right)\Rightarrow625^k\equiv1\left(mod24\right)\)
\(\Rightarrow5^{8^{2008}}\equiv1\left(mod24\right)\)
\(\Rightarrow5^{8^{2008}}+23\equiv0\left(mod24\right)\)
Hay \(5^{8^{2008}}+23\) chia hết 24
(x - 45) x 27 = 0
=> x - 45 = 0 : 27
=> x - 45 = 0
=> x = 0 + 45
=> x = 45
Vậy: ..
`(x - 45) . 27 = 0`
`=> x - 45 = 0 : 27`
`=> x - 45 = 0`
`=> x = 45`
Vậy `x = 45`
\(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4.55=7^3.7.11.5=5.77.7^3\)
Do 77 chia hết 77 \(\Rightarrow5.77.7^3⋮77\)
Vậy \(\left(7^6+7^5-7^4\right)⋮77\)