Lúc 7 giờ một xe máy đi từ thành phố A đến thành phố B với vận tốc 40km/h. Đến 8 giờ, một ô tô cũng khỏi hành từ thành phố A đến thành phố B với vận tốc 60 km/h. Hỏi sau mấy giờ thì ô tô đuổi kịp xe máy? Khi đó đồng hồ chỉ mấy giờ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Bài làm
Ta có: 3a3 + 3a2b + 3ab2 + 3b3
= 3( a3 + a2b + ab2 + b3 )
= 3[ a2( a + b ) + b2( a + b ) ]
= 3( a2 + b2 )( a + b )
Ta có: ( a2 + b2 ) > 0 V a, b
=> ( a2 + b2 ) . 3 > 0
Mà 3( a2 + b )2( a + b ) > 0 ( đpcm )
\(3a^3+3a^2b+3ab^2+3b^3>0\)
\(\Leftrightarrow3\left(a^3+a^2b+ab^2+b^3\right)>0\)
\(\Leftrightarrow3\left[a^2\left(a+b\right)+b^2\left(a+b\right)\right]>0\)
\(\Leftrightarrow3\left(a^2+b^2\right)\left(a+b\right)>0\)(đpcm)

Thực hiện phép chia a3-2a2+7a-7 cho a2+3, kết quả: a3-2a2+7a-7=(a2+3)(a-2)+(4a+1)
Lập luận để phép chia hết thì 4a-1 chia hết cho a2+3 (4a+1)\(⋮\)(a+3)
=> (4a+1)(4a+1) \(⋮\)(a2+3) (vì a thuộc Z nên 4a+1 thuộc Z)
=> (16a2-1) chia hết cho a2+3
=> [16(a2+3)-49] chia hết cho a2+3
=> 49 chia hết cho a2+3
+) Tìm a, thử lại và kết luận a={-2;2}

Ta có:
\(\frac{2.\left(x^2+x+1\right)}{x^2+1}=\frac{2.\left(x^2+1\right)+2x}{x^2+1}=2+\frac{2x}{x^2+1}\)
Ta có:\(2+\frac{2x}{x^2+1}-1=1+\frac{2x}{x^2+1}\)
\(=\frac{x^2+2x+1}{x^2+1}=\frac{\left(x+1\right)^2}{x^2+1}\ge0\) \(\Rightarrow\frac{2.\left(x^2+x+1\right)}{x^2+1}\ge1\)
\(2+\frac{2x}{x^2+1}-3=\frac{2x}{x^2+1}-1=\frac{-x^2+2x-1}{x^2+1}\)
\(=\frac{-\left(x-1\right)^2}{x^2+1}\le0\) \(\Rightarrow\frac{2.\left(x^2+x+1\right)}{x^2+1}\le3\)
Vậy \(1\le\frac{2.\left(x^2+x+1\right)}{x^2+1}\le3\)
