K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2019

\(\sqrt{4x-y^2}=\sqrt{y+2}+\sqrt{4x^2+y}< =>4x-y^2=\)\(y+2+4x^2+y+2\sqrt{\left(y+2\right)\left(4x^2+1\right)}\)

<=> \(\left(y+1\right)^2+\left(2x-1\right)^2+2\sqrt{\left(y+2\right)\left(4x^2+y\right)}=0\)

<=> y+1=0;    2x-1=0;       \(\left(y+2\right)\left(4x^2+y\right)=0\)<=> x= \(\frac{1}{2}\); y= -1

thay lại phương trình thấy thỏa mãn => là nghiêm

16 tháng 10 2019

điều kiện x khác 0

\(\frac{5}{x^2}+\frac{2}{\sqrt{1+\frac{5}{x^2}}}=1\)

đặt \(\frac{5}{x^2}=a\left(a>0\right)\)=> a+\(\frac{2}{\sqrt{1+a}}=1\)   (1)

<=> \(1-a=\frac{2}{\sqrt{1+a}}>0=>a< 1\)

với a<1 thì \(\frac{2}{\sqrt{1+a}}>\frac{2}{\sqrt{1+1}}=\sqrt{2}>1\) kết hợp với a> 0 => (1) vô nghiệm hay pt đã cho vô nghiệm

7 tháng 11 2019

em nhổ tóc đầu cho bạn học 13 tuổi không may bị bay mất một khoảng tóc liệu có mọc lại không xin được tư vấn

16 tháng 10 2019

\(3\sqrt{5a}-\sqrt{20a}+4\sqrt{45a}+\sqrt{a}\)\(a\ge0\)

\(\Leftrightarrow3\sqrt{5a}-2\sqrt{5a}+12\sqrt{5a}+\sqrt{a}\)

\(\Leftrightarrow13\sqrt{5a}+\sqrt{a}\)

VẬY BIỂU THỨC ĐÃ CHO \(=13\sqrt{5a}+\sqrt{a}\)

Đặt \(t=\sqrt{x-3}\)\(\left(t\ge0\right)\)

\(\sqrt{8+t}+\sqrt{5-t}=5\)

\(\Leftrightarrow\left(\sqrt{8+t}+\sqrt{5-t}\right)^2=25\)

\(\Leftrightarrow8+t+5-t+2\sqrt{\left(8+t\right)\left(5-t\right)}=25\)

\(\Leftrightarrow2\sqrt{\left(8+t\right)\left(5-t\right)}=12\)

\(\Leftrightarrow\sqrt{\left(8+t\right)\left(5-t\right)}=6\)

\(\Leftrightarrow\left(8+t\right)\left(5-t\right)=36\)

\(\Leftrightarrow t^2+3t-4=0\)

\(\Leftrightarrow\orbr{\begin{cases}t=1\\t=-4\left(l\right)\end{cases}}\)

thay t=1 = căn (x-3) => x=4

16 tháng 10 2019

điều kiện x-3 \(\ge0;5-\sqrt{x-3}\ge0\)(1)

đặt \(\sqrt{8+\sqrt{x-3}}=a\left(a\ge\sqrt{8}\right);\sqrt{5-\sqrt{x-3}}=b\left(b\ge0\right)\)

\(\hept{\begin{cases}a+b=5\\a^2+b^2=13\end{cases}< =>\hept{\begin{cases}a=5-b\\\left(5-b\right)^2+b^2=13\end{cases}< =>}}\)\(\hept{\begin{cases}a=5-b\\2b^2-10b+12=0\end{cases}< =>\hept{\begin{cases}a=3\\b=2\end{cases};\hept{\begin{cases}a=2\\b=3\end{cases}}}}\)

chỉ có a=3 là thoảm= mãn a \(\ge\sqrt{8}\)

\(\hept{\begin{cases}a=3\\b=2\end{cases}< =>\hept{\begin{cases}8+\sqrt{x-3}=9\\5-\sqrt{x-3}=4\end{cases}< =>x=4}}\)(thỏa mãn (1))

vậy x=4

16 tháng 10 2019

Áp dụng BĐT Cauchy dạng phân thức :
\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\ge\frac{9}{ab+bc+ac}\)

\(\Rightarrow VT\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ac}\)

\(\Leftrightarrow VT\ge\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ac}+\frac{1}{ab+bc+ac}+\frac{7}{ab+ac+bc}\)

Theo hệ quả của bất đẳng thức Cauchy 

\(\Rightarrow ab+bc+ac\le\frac{1}{3}\left(a+b+c\right)^2=\frac{1}{3}\)

\(\Rightarrow\frac{7}{ab+bc+ac}\ge21\left(1\right)\)

Áp dụng bất đẳng thức Cauchy dạng phân thức 

\(\Rightarrow\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ac}+\frac{1}{ab+bc+ac}\)

\(\ge\frac{9}{a^2+b^2+c^2+2\left(ab+bc+ac\right)}=9\)  (2)

Từ (1) và (2) 

\(\Rightarrow VT\ge21+9=30\left(đpcm\right)\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

Chúc bạn học tốt !!!

15 tháng 1 2020

Trl 

Bn hoàng việt nhật lm đúng r nhé :3

hok tốt

16 tháng 10 2019

Áp dụng BĐT Cauchy ta có : \(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}}\Rightarrow\frac{1}{\frac{1}{a}+\frac{1}{b}}\le\frac{\sqrt{ab}}{2}\)

Thiết lập tương tự và thu lại ta có :

\(\Rightarrow VP\le4\left(\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2}\right)=2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\left(1\right)\)

Áp dụng BĐT Cauchy ta có : \(a+b\ge2\sqrt{ab}\)
\(\Rightarrow\left(a+b+\frac{1}{2}\right)^2\ge\left(2\sqrt{ab}+\frac{1}{2}\right)^2\ge2.2\sqrt{ab}.\frac{1}{2}=2\sqrt{ab}\)

Thiết lập tương tự và thu lại ta có ;

\(\Rightarrow VT\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\left(2\right)\)

Từ (1) và (2)  suy ra

\(VT\ge VP\)

\(\Rightarrowđpcm\)

Chúc bạn học tốt !!!

17 tháng 10 2019

\(\left(\sqrt{x^2+1}+x\right)^5=a;\left(\sqrt{x^2+1}-x\right)^5=b=>ab=1;\)\(\sqrt[5]{a}-\sqrt[5]{b}=2x< =>x=\frac{\sqrt[5]{a}-\sqrt[5]{b}}{2}\)(1)

(a-b)2 = (a+b)2-4ab = 1232 -4 = 125.121 => |a-b| = \(\sqrt{125.121}=55\sqrt{5}\)

với \(a\ge b< =>x\ge0\)ta có hệ \(\hept{\begin{cases}a-b=55\sqrt{5}\\a+b=123\end{cases}< =>\hept{\begin{cases}a=\frac{55\sqrt{5}+123}{2}\\b=\frac{123-55\sqrt{5}}{2}\end{cases}}}\)

thay vào (1) ta được x =\(\frac{\sqrt[5]{\frac{123+55\sqrt{5}}{2}}-\sqrt[5]{\frac{123-55\sqrt{5}}{2}}}{2}\)(thỏa mãn x\(\ge0\))

với a<b <=> x<0 ta có hệ \(\hept{\begin{cases}a-b=-55\sqrt{5}\\a+b=123\end{cases}< =>\hept{\begin{cases}a=\frac{123-55\sqrt{5}}{2}\\b=\frac{123+55\sqrt{5}}{2}\end{cases}}}\)

=> x= \(\frac{\sqrt[5]{\frac{123-55\sqrt{5}}{2}}-\sqrt[5]{\frac{123+55\sqrt{5}}{2}}}{2}\)(thỏa mãn x<0)