K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2020

ta có 1/a+1/b+1/c=1/2

=>1/a+1/b+1/c=1/a+b+c (do a+b+c=2)

=>(1/a-1/a+b+c)+(1/b+1/c)=0

=>b+c/a(a+b+c) +b+c/bc=0

=>(b+c)(1/a(a+b+c) +1/bc)=0

=>(b+c)(bc+a^2 +ab+ac)=0

=>(b+c)(a+b)(a+c)=0

+)Với b+c=0=>a=2

+)với a+b=0=>c=2

+)vói c+a=0=>b=2

      Vậy trong 3 số a,b,c tồn tại một số =2

14 tháng 5 2020

\(\left(x+3\right)^2\left(x^2+6x+1\right)=9\)

\(\Leftrightarrow\left(x^2+6x+9\right)\left(x^2+6x+1\right)=9\)

Đặt: \(x^2+6x+5=t\)thì:

\(\left(1\right)\Leftrightarrow\left(t-4\right)\left(t+4\right)=9\)

\(\Leftrightarrow t^2-25=0\)

\(\Leftrightarrow\left(t-5\right)\left(t+5\right)=0\)

\(\Leftrightarrow\left(x^2+6x\right)\left(x^2+6x+10\right)=0\)

\(\Leftrightarrow x\left(x+6\right)=0\left(x^2+6x+10=\left(x+3\right)^2+1>0\right)\)

.... bạn tự giả tiếp

Chúc bạn hc tốt :D

14 tháng 5 2020

a) \(\left(x+1\right)^2\left(x+2\right)+\left(x+1\right)^2\left(x-2\right)=-24\)

\(\Leftrightarrow\left(x+1\right)^2\left(x+2+x-2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2\cdot2x=0\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x+1\right)^2=0\\2x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x+1=0\\x=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-1\\x=0\end{cases}}}\)

b) \(2x^3+3x^2+6x+5=0\)

\(\Leftrightarrow2x^3+2x^2+x^2+x+5x+5=0\)

\(\Leftrightarrow2x^2\left(x+1\right)+x\left(x+1\right)+5\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x^2+x+5\right)=0\)

\(\Rightarrow x+1=0\left(2x^2+x+5\ne0\forall x\right)\)

<=> x=-1

Vậy x=-1

21 tháng 5 2020

Rút gọn:

\(M=\frac{x^2+x}{x^2-2x+1}:\left(\frac{x+1}{x}-\frac{1}{1-x}+\frac{2x^2}{x^2-x}\right)\)

\(M=\frac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\frac{x\left(x-1\right)}{x^2-1+1+2x^2}\)

\(M=\frac{x\left(x+1\right)}{x-1}\cdot\frac{x}{3x^3}\)

\(M=\frac{x+1}{3x\left(x-1\right)}\)

19 tháng 5 2020

a) 3a +3b -a2-ab

= 3.(a+b) -a.(a+b)=(3-a).(a+b)

b) x2 +x +y2-y-2xy

=(x2 - 2xy+y2) +(x-y)

=(x-y).(x-y+1)

c) -x2 +7x -6

= -x2 + x +6x-6

= x.(1-x) -6.(1-x) = (1-x).(x-6)

d) 5x3y -10x2y2 +5xy3

= 5xy.(x2 -2xy +y2) = 5xy.(x-y)2

e) 2x2 +7x -15

= 2x2 -3x +10x -15

=x.(2x-3) + 5.(2x-3)

=(2x-3).(x+5)

g) x2 -2x +2y -xy

=x.(x-2)-y.(x-2)

=(x-y).(x-2)

h) bn go lai de ho mk dc k?

14 tháng 5 2020

\(\left|x-7\right|+\left|x-5\right|=2\)

Ta có \(\hept{\begin{cases}\left|x-7\right|\ge x-7\\\left|x-5\right|\ge x-5\end{cases}\Rightarrow\left|x-7\right|+\left|x-5\right|\ge x-7+x-5=2x-12}\)

Mà \(\left|x-7\right|+\left|x-5\right|=2\)

\(\Rightarrow2\ge2x-12\)hay \(2x-12\le2\)

\(\Leftrightarrow2x\le14\)

\(\Leftrightarrow x\le7\)

16 tháng 5 2020

ddd

*) Nếu a,b đều ko chia hết cho 3 ⇒a2+b2≡2(mod3)⇒a2+b2≡2(mod3)

Nên c2≡2(mod3)c2≡2(mod3) (Vô lí) 

Nên Tồn tại ab⋮3ab⋮3

*) Nếu a,b đều ko chia hết cho 4, tương tự như trên ⇒ab⋮4⇒ab⋮4

Vậy từ 2 TH trên có đpcmcdvm

19 tháng 5 2020

Bài làm:

Vì n và 40 là 2 SNT cùng nhau => n và 10 là 2 SNT cùng nhau

=> n sẽ không chia hết cho 2 hoặc 5

=> n là số lẻ

Đặt n = 2k+1 (k là số tự nhiên)

=> n4-1 = (n2-1)(n2+1) = (n-1)(n+1)(n2+1)

Thay n = 2k+1 vô ta được: (2k+1-1)(2k+1+1)(4k2+4k+1+1)

= 2k(2k+2)(4k2+4k+2)

= 8k(k+1)(2k2+2k+1) chia hết cho 8

=> n4-1 chia hết cho 8 (1)

Ta lại đặt n = 5k+1 (k lẻ)

=> n4-1 = (n+1)(n-1)(n2+1) = (5k+1-1)(5k+1+1)(25k2+10k+1)

= 5k(5k+2)(25k2+10k+1) chia hết cho 5

=> n4-1 chia hết cho 5 (2)

Từ (1) và (2) => \(n^4-1⋮8.5=40\)

Vậy \(n^4-1⋮40\)

Mk k chắc bài mk làm đúng nhé!