Cho góc MON có số đo là 120 độ. Vẽ các tia OA,OB sao cho OA vuông góc với OM, OB vuông góc với ON.
Vẽ tia Ox và Oy thứ tự là các tia phân giác của các góc AON và BON.CMR Ox vuông góc vơiis Oy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng các hệ số của đa thức trên sau khi khai triển là:
\(f\left(1\right)=\left(19-20.1+1^2\right)^{2021}.\left(19+20.1+1^2\right)^{2020}\)
\(=0^{2021}.40^{2020}=0\)
Ta xét theo quy luật:
(_3)4n = _1 ; (_3)4n+1 = _3; (_3)4n+2 = _9; (_3)4n+3 = _7 ;
(_7)4n = _1 ; (_7)4n+1 = _7; (_3)4n+2 = _9; (_3)4n+3 = _3 .
Ta thấy 2009 = 502 x 4 + 1 nên 32009 có tận cùng là 3.
2010 = 502 x 4 + 2 nên 72010 có tận cùng là 9.
2011 = 502 x 4 + 3 nên 132011 có tận cùng là 7.
Vậy M có chữ số tận cùng giống với chữ số tận cùng của tích : 3 x 9 x 7 = 189.
Tóm lại M có chữ số tận cùng là 9.
Ta có 32009 = 32008.3 = (34)502.3 = (...1)502.3 =(...1) . 3 = (...3)
72010 = 72008.49 = (74)502.49 = (...1)502.49 = (...1).49 = (...9)
132011 = 132008.133 = (134)502.(...7) = (...1)502.(...7) = (...1).(...7) = (...7)
Khi đó 32009.72010.132011 = (...3).(...9).(...7) = (...9)
Vậy chữ số tận cùng của tích trên là 9
Ta có S = \(\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{d+a+b}+\frac{d}{a+b+c}\)
=> S + 4 = \(\left(\frac{a}{b+c+d}+1\right)+\left(\frac{b}{c+d+a}+1\right)+\left(\frac{c}{d+a+b}+1\right)+\left(\frac{d}{a+b+c}+1\right)\)
= \(\frac{a+b+c+d}{b+c+d}+\frac{a+b+c+d}{c+d+a}+\frac{a+b+c+d}{d+a+b}+\frac{a+b+c+d}{a+b+c}\)
\(=\left(a+b+c+d\right)\left(\frac{1}{b+c+d}+\frac{1}{c+d+a}+\frac{1}{d+a+b}+\frac{1}{a+b+c}\right)\)
\(=4000.\frac{1}{40}=100\)
=> S = 100 - 4 = 96
\(\frac{ab}{a+b}=\frac{bc}{b+c}\)
<=> \(\frac{10a+b}{a+b}=\frac{10b+c}{b+c}\)
<=> \(\frac{9a}{a+b}=\frac{9b}{b+c}\)
<=> \(\frac{a}{a+b}=\frac{b}{b+c}\)
=> a(b + c) = b(a + b)
<=> ab + ac = ba + b2
=> ac = b2 (đpcm)
Ta có: \(\left|2x-3y\right|+\left|2y+3z\right|+\left|x+y+\frac{x}{z}\right|\ge0\left(\hept{\begin{cases}\forall x,y,z\\z\ne0\end{cases}}\right)\)
\(\Rightarrow\hept{\begin{cases}2x-3y=0\\2y+3z=0\\x+y+\frac{x}{z}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{2}y\\z=-\frac{2}{3}y\\\frac{3}{2}y-\frac{2}{3}y+\frac{\frac{3}{2}y}{-\frac{2}{3}y}=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{3}{2}y\\z=-\frac{2}{3}y\\\frac{5}{6}y=\frac{9}{4}\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{3}{2}y=\frac{81}{20}\\y=\frac{27}{10}\\z=\frac{-9}{5}\end{cases}}\)