Giải pt \(\left(5x-4\right)\sqrt{2x-3}-\left(4x-5\right)\sqrt{3x-3}=2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(a=\sqrt[3]{7-x},b=\sqrt[3]{x-5}\Rightarrow a^3+b^3=2,a^3-b^3=12-2x\)
Ta có hệ:
\(\hept{\begin{cases}\frac{a-b}{a+b}=\frac{a^3-b^3}{2}\\a^3+b^3=2\end{cases}}\Rightarrow\frac{a-b}{a+b}=\frac{a^3-b^3}{a^3+b^3}=\frac{\left(a-b\right)\left(a^2+ab+b^2\right)}{\left(a+b\right)\left(a^2-ab+b^2\right)}\Rightarrow a^2+ab+b^2=a^2-ab+b^2\)
\(\Rightarrow ab=0\)\(\Leftrightarrow\orbr{\begin{cases}a=0\\b=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=7\end{cases}}}\)(thử lại thỏa mãn).
Lấy điểm \(I\)thỏa mãn: \(\overrightarrow{IA}+\overrightarrow{IB}+5\overrightarrow{IC}=\overrightarrow{0}\).
\(MA^2+MB^2+5MC^2\)
\(=\overrightarrow{MA}^2+\overrightarrow{MB}^2+5\overrightarrow{MC}^2\)
\(=\left(\overrightarrow{MI}+\overrightarrow{IA}\right)^2+\left(\overrightarrow{MI}+\overrightarrow{IB}\right)^2+5\left(\overrightarrow{MI}+\overrightarrow{IC}\right)^2\)
\(=7MI^2+IA^2+IB^2+5IC^2=4a^2\)
\(\Rightarrow MI=\sqrt{\frac{4a^2-IA^2-IB^2-5IC^2}{7}}=r\)
Suy ra \(M\)thuộc đường tròn tâm \(I\)bán kính \(r\).
Tính tan15o
\(\cos^215^o=1-\left(\frac{\sqrt{6}-\sqrt{2}}{4}\right)^2=\frac{8+2\sqrt{12}}{16}\)
\(=\frac{\left(\sqrt{6}\right)^2+2\sqrt{6}\sqrt{2}+\left(\sqrt{2}\right)^2}{16}=\frac{\left(\sqrt{6}+\sqrt{2}\right)^2}{16}\)
Vì 15o<90o nên cos15o>0 => cos15o=\(\frac{\sqrt{6}+\sqrt{2}}{4}\)
tan 15o \(=\frac{sin15^0}{c\text{os}15^0}=\frac{\sqrt{6}-\sqrt{2}}{\sqrt{6}+\sqrt{2}}=\left(\frac{\left(\sqrt{6}-\sqrt{2}\right)}{6-2}\right)^2=2-\sqrt{3}\)
CM:
\(2\sin15^0\cos15^0=2\frac{\sqrt{6}-\sqrt{2}}{4}.\frac{\sqrt{6}+\sqrt{2}}{4}=\frac{1}{2}=\sin30^0\)
BĐT cần chứng minh tương đương với:
\(\frac{a}{b}-\frac{a}{b+c}+\frac{b}{c}-\frac{b}{c+a}+\frac{c}{a}-\frac{c}{a+b}\ge\frac{3}{2}\)
\(\Leftrightarrow\frac{ac}{b\left(b+c\right)}+\frac{ba}{c\left(c+a\right)}+\frac{cb}{a\left(a+b\right)}\ge\frac{3}{2}\)
Ta có:
\(\frac{ac}{b\left(b+c\right)}+\frac{ba}{c\left(c+a\right)}+\frac{cb}{a\left(a+b\right)}\)
\(=\frac{a^2c^2}{abc\left(b+c\right)}+\frac{b^2a^2}{abc\left(c+a\right)}+\frac{c^2b^2}{abc\left(a+b\right)}\)
\(\ge\frac{\left(ab+bc+ca\right)^2}{abc\left(a+b\right)+abc\left(b+c\right)+abc\left(c+a\right)}\)
\(=\frac{\left(ab+bc+ca\right)^2}{2abc\left(a+b+c\right)}\)
Bất đẳng thức cần chứng minh sẽ đúng nếu ta chứng minh được \(\frac{\left(ab+bc+ca\right)^2}{abc\left(a+b+c\right)}\ge3\)
\(\Leftrightarrow\left(ab+bc+ca\right)^2\ge3abc\left(a+b+c\right)\)
Đặt \(ab=x,bc=y,ca=z\)suy ra ta cần chứng minh
\(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)
\(\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2zx\ge3xy+3yz+3zx\)
\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\)(đúng)
Vậy bất đẳng thức ban đầu là đúng.
Dấu \(=\)xảy ra khi \(a=b=c\).
\(\Delta'=\left(m+1\right)^2-\left(m^2+2\right)=2m-1\)
Để phương trình có hai nghiệm \(x_1,x_2\)thì \(\Delta'\ge0\Rightarrow2m-1\ge0\Leftrightarrow m\ge\frac{1}{2}\).
Theo Viete ta có: \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+2\end{cases}}\)
\(A=\sqrt{2\left(x_1^2+x_2^2\right)+16}-3x_1x_2\)
\(A=\sqrt{2\left(x_1+x_2\right)^2-4x_1x_2+16}-3x_1x_2\)
\(A=\sqrt{2\left(2\left(m+1\right)\right)^2-4\left(m^2+2\right)+16}-3\left(m^2+2\right)\)
\(A=\sqrt{4m^2+16m+16}-3\left(m^2+2\right)\)
\(A=2\sqrt{\left(m+2\right)^2}-3\left(m^2+2\right)\)
\(A=2\left|m+2\right|-3\left(m^2+2\right)\)
\(A=2m+4-3m^2-6\)(vì \(m\ge\frac{1}{2}\)nên \(m+2>0\))
\(A=-3m^2+2m-2\)
Ta lập bảng biến thiên với hàm \(f\left(x\right)=-3x^2+2x-2\)với \(x\ge\frac{1}{2}\).
Kết quả: \(maxA=-\frac{7}{4}\)
suy ra \(a=-7,b=4\Rightarrow2a-3b=-26\)
\(\left(x-y\right)^2=49\Leftrightarrow\orbr{\begin{cases}x-y=7\\x-y=-7\end{cases}}\)
- \(\hept{\begin{cases}x-y=7\\3x+4y=84\end{cases}\Leftrightarrow\hept{\begin{cases}x=16\\y=9\end{cases}}}\)
- \(\hept{\begin{cases}x-y=-7\\3x+4y=84\end{cases}\Leftrightarrow\hept{\begin{cases}x=8\\y=15\end{cases}}}\)
ĐK: \(x\ge\frac{3}{2}\)
Ta có: \(\left(5x-4\right)\sqrt{2x-3}-\left(4x-5\right)\sqrt{3x-2}=2\)
\(\Leftrightarrow\left(5x-4\right)\sqrt{2x-3}=2+\left(4x-5\right)\sqrt{3x-2}\)
\(\Leftrightarrow50x^3-155x^2+152x-48=48x^3-152x^2+155x-46+4\left(4x-5\right)\sqrt{3x-2}\)
\(\Leftrightarrow2x^3-3x^2-3x-2-4\left(4x-5\right)\sqrt{3x-2}=0\)
\(\Leftrightarrow\left(4x-5\right)\sqrt{3x-2}\left(\sqrt{3x-2}-4\right)+2x^3-15x^2+20x-12=0\)
\(\Leftrightarrow\frac{3\left(x-6\right)\left(4x-5\right)\sqrt{3x-2}}{\sqrt{3x-2}+4}+\left(x-6\right)\left(2x^2-3x+2\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left[\frac{3\left(4x-5\right)\sqrt{3x-2}}{\sqrt{3x-2}+4}+2x^2-3x+2\right]=0\Leftrightarrow x=6\)
Vì \(\frac{3\left(4x-5\right)\sqrt{3x-2}}{\sqrt{3x-2}+4}+2x^2-3x+2>0,\forall x\ge\frac{3}{2}\)
Vậy pt có nghiệm duy nhất x=6