cho hình chữ nhật ABCD.Kẻ BE vuông góc với AC, I là trung điểm AE
M là trung điểm CD
H là trung điểm BE
a) Chứng minh HC//MI
b) Chứng minh MI vuông góc với IB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Qua B dựng đường thẳng song song với DK và cắt AC tại G
Xét tam giác ADK ta có: AB = BD; BG//DK
⇒ AG = GK (định lý đường trung bình của tam giâc)
⇒ GK = \(\dfrac{1}{2}\) AK (1)
Xét tam giác BCG ta có:
BM = MC; MK // BG
⇒ GK = KC (định lý 1 đường trung bình của tam giác) (2)
Kết hợp (1) và (2) ta có:
KC = \(\dfrac{1}{2}\) AK
⇒ AK = 2KC (đpcm)
Dựng đường thẳng qua B và song song với DK cắt AC tại G
Xét tam giác ADK ta có:
AB = BD; BG // DK
⇒ KG = GA = \(\dfrac{1}{2}\) AK (định lý 1 đường trung bình của tam giác) (1)
Xét tam giác BCG ta có:
BM = MC; MK // BG
⇒ KC = KG (định lý 1 đường trung bình của tam giác) (2)
Kết hợp (1) và (2) ta có:
KC = \(\dfrac{1}{2}\) AK
⇒ AK = 2KC (đpcm)
Bạn nên viết đề cho rõ ràng để mọi người hiểu đề và hỗ trợ bạn tốt hơn. Viết đề díu dít vào nhau và không gõ công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) khiến bài của bạn có khả năng bị bỏ qua cao hơn nhé.
Ta có:
6x² + 3x - 5 = 3x(2x + 1) - 5
Để M là số nguyên thì (6x² + 3x - 5) ⋮ (2x + 1)
⇒ 5 ⋮ (2x + 1)
⇒ 2x + 1 ∈ Ư(5) = {-5; -1; 1; 5}
⇒ 2x ∈ {-6; -2; 0; 4}
⇒ x ∈ {-3; -1; 0; 2}
Vậy x ∈ {-3; -1; 0; 2} thì M là số nguyên
a) Số sản phẩm công ty sản xuất trong một ngày theo kế hoạch:
10000/x (sản phẩm)
b) Số sản phẩm công ty thực tế đã làm được trong một ngày:
10080/(x - 1) (sản phẩm)
c) Số sản phẩm theo kế hoạch mỗi ngày phải làm:
10000/25 = 400 (sản phẩm)
Số sản phẩm thực tế làm mỗi ngày:
10080/(25 - 1) = 420 (sản phẩm)
Số sản phẩm làm thêm mỗi ngày:
420 - 400 = 20 (sản phẩm)
Bổ sung:
c, Số sản phẩm công ty làm thêm trong một ngày biểu thị theo \(x\) là:
\(\dfrac{10080}{x-1}\) - \(\dfrac{10000}{x}\) = \(\dfrac{80x+10000}{x\left(x-1\right)}\) (sản phẩm)
\(\dfrac{6}{x^2-3x}\) = \(\dfrac{A}{x}\) + \(\dfrac{B}{x-3}\) (nếu đúng với mọi \(x\) ≠0; 3 thì làm như sau)
Đkxđ: \(\left\{{}\begin{matrix}x^2-3x\ne0\\x\ne0\\x-3\ne0\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x\left(x-3\right)\ne0\\x\ne0\\x\ne3\end{matrix}\right.\) ⇒ \(\left\{{}\begin{matrix}x\ne0\\x\ne3\end{matrix}\right.\)
\(\dfrac{A}{x}\) + \(\dfrac{B}{x-3}\) = \(\dfrac{A.\left(x-3\right)}{x.\left(x-3\right)}\) + \(\dfrac{B.x}{x\left(x-3\right)}\) = \(\dfrac{Ax-3A+Bx}{x\left(x-3\right)}\)
⇒\(\dfrac{6}{x^2-3x}\) = \(\dfrac{6}{x.\left(x-3\right)}\) = \(\dfrac{Ax-3A+Bx}{x.\left(x-3\right)}\)
⇒ \(\dfrac{6}{x\left(x-3\right)}\) - \(\dfrac{Ax-3A+Bx}{x\left(x-3\right)}\) = 0
\(\dfrac{1}{x\left(x-3\right)}\).[6 - (A\(x\) - 3A + B\(x\))] = 0
⇒ 6 - A\(x\) + 3A - B\(x\) = 0
⇒ - \(x\).( A + B) + 6 + 3A = 0 (1)
(1) đúng với ∀ \(x\) ≠0; 3 ⇔ \(\left\{{}\begin{matrix}A+B=0\\6+3A=0\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}A=-B\\3A=-6\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}A=-B\\A=-6:3\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}B=-A\\A=-2\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}B=2\\A=-2\end{matrix}\right.\)
Vậy A = -2; B = 2
\(\dfrac{6}{x^2-3x}=\dfrac{A}{x}+\dfrac{B}{x-3}\left(x\ne0;x\ne3\right)\)
\(\Leftrightarrow\dfrac{6}{x\left(x-3\right)}=\dfrac{A\left(x-3\right)}{x\left(x-3\right)}+\dfrac{Bx}{x\left(x-3\right)}\)
\(\Leftrightarrow6=A\left(x-3\right)+Bx\)
\(\Leftrightarrow6=Ax-3A+Bx\)
\(\Leftrightarrow0x+6=\left(A+B\right)x-3A\)
\(\Leftrightarrow\left\{{}\begin{matrix}A+B=0\\-3A=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}A=-B\\A=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}B=2\\A=-2\end{matrix}\right.\)
Bài 3:
a, rút gọn P = \(\dfrac{x^2}{x+1}\) + \(\dfrac{2.\left(x-1\right)}{x}\) + \(\dfrac{x+2}{x^2+x}\) với \(x\ne0;x\ne-1\)
P = \(\dfrac{x^2}{x+1}\) + \(\dfrac{2\left(x-1\right)}{x}\) + \(\dfrac{x+2}{x.\left(x+1\right)}\)
P = \(\dfrac{x^2.x}{\left(x+1\right).x}\) + \(\dfrac{2\left(x-1\right)\left(x+1\right)}{x.\left(x+1\right)}\) + \(\dfrac{x+2}{x\left(x+1\right)}\)
P = \(\dfrac{x^3}{x\left(x+1\right)}\) + \(\dfrac{2\left(x^2-1\right)}{x\left(x+1\right)}\) + \(\dfrac{x+2}{x\left(x+1\right)}\)
P = \(\dfrac{x^3+2x^2-2+x+2}{x.\left(x+1\right)}\)
P = \(\dfrac{x^3+2x^2+x-\left(2-2\right)}{x.\left(x+1\right)}\)
P = \(\dfrac{x^3+2x^2+x}{x.\left(x+1\right)}\)
P = \(\dfrac{x\left(x^2+2x+1\right)}{x.\left(x+1\right)}\)
P = \(\dfrac{x.\left(x+1\right)^2}{x.\left(x+1\right)}\)
P = \(x\) + 1
b, Thay \(x\) = 1 vào biểu thức P = \(x\) + 1 ta có:
P = 1 + 1
P = 2
a) \(A+\dfrac{1}{x+1}=\dfrac{3x+1}{x^2-2x+1}-\dfrac{x+3}{x^2-1}\left(x\ne\pm1\right)\)
\(A=\dfrac{3x+1}{\left(x-1\right)^2}-\dfrac{x+3}{\left(x+1\right)\left(x-1\right)}-\dfrac{1}{x+1}\)
\(A=\dfrac{\left(3x+1\right)\left(x+1\right)}{\left(x-1\right)^2\left(x+1\right)}-\dfrac{\left(x+3\right)\left(x-1\right)}{\left(x-1\right)^2\left(x+1\right)}-\dfrac{\left(x-1\right)^2}{\left(x-1\right)^2\left(x+1\right)}\)
\(A=\dfrac{3x^2+3x+x+1-x^2+x-3x+3-x^2+2x-1}{\left(x-1\right)^2\left(x+1\right)}\)
\(A=\dfrac{x^2+4x+3}{\left(x-1\right)^2\left(x+1\right)}\)
\(A=\dfrac{\left(x+1\right)\left(x+3\right)}{\left(x-1\right)^2\left(x+1\right)}\)
\(A=\dfrac{x+3}{\left(x-1\right)^2}\)
\(A=\dfrac{x+3}{x^2-2x+1}\)
b) \(\dfrac{4}{x^2+x+1}-P=\dfrac{2}{1-x}+\dfrac{2x^2+4x}{x^3-1}\)
\(P=\dfrac{4}{x^2+x+1}-\dfrac{2}{1-x}-\dfrac{2x^2+4x}{x^3-1}\)
\(P=\dfrac{4}{x^2+x+1}+\dfrac{2}{x-1}-\dfrac{2x^2+4x}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(P=\dfrac{4\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{2\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{2x^2+4x}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(P=\dfrac{4x-4+2x^2+2x+2-2x^2-4x}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(P=\dfrac{2x-2}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(P=\dfrac{2\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(P=\dfrac{2}{x^2+x+1}\)
a) Do M là trung điểm của CD (gt)
⇒ CM = DM = CD/2
Do I là trung điểm AE (gt)
H là trung điểm BE (gt)
⇒ HI là đường trung bình của ∆ABE
HI // AB và HI = AB/2 (2)
Do ABCD là hình chữ nhật (gt)
⇒ AB = CD (3)
Từ (1), (2) và (3) ⇒ HI = CM
Do ABCD là hình chữ nhật (gt)
⇒ AB // CD (4)
Từ (2) và (4) ⇒ HI // CD
⇒ HI // CM
Tứ giác CMIH có:
HI // CM (cmt)
HI = CM (cmt)
⇒ CMIH là hình bình hành
⇒ HC // MI
b) Do HC // MI (cmt)
⇒ ∠MIC = ∠ICH (so le trong)
Do HI // MC (cmt)
⇒ ∠HIC = ∠ICM (so le trong)
Do I và H lần lượt là trung điểm của AE và BE (gt)
⇒ AE/BE = AI/BH
Xét hai tam giác vuông: ∆AEB và ∆BEC có:
∠BAE = ∠CBE (cùng phụ ACB)
⇒ ∆AEB ∆BEC (g-g)
⇒ AE/BE = AB/BC
Mà AE/BE = AI/BH (cmt)
⇒ AI/BH = AB/AC
Xét ∆AIB và ∆BHC có:
AI/BH = AB/BC (cmt)
∠BAI = ∠CBH (cùng phụ ACB)
⇒ ∆AIB ∆BHC (g-g)
⇒ ∠ABI = ∠BCH
Do HI // AB (cmt)
⇒ ∠ABI = ∠BIH (so le trong)
⇒ ∠BIH = ∠BCH
Ta có:
∠BIM = ∠BIH + ∠HIC + ∠MIC
= ∠BCH + ∠ICM + ∠ICH
= ∠BCD = 90⁰
Vậy MI ⊥ IB
Gọi N là trung điểm của BE
=> MN là đường trung ình của tam giác ABE
=>MN//AB, MN=1/2 AB
Mà AB=CD và AB//CD
=>MN//CD, MN = 1/2 CD
=> MNCK là hình bình hành
=> NC//MK (1)
Ta có: MN //AB
AB vuông góc với BC
=> MN vuông góc với BC tại E (E thuộc BC)
Tam giác BCM có BE và ME là đường cao và chúng cắt nhau tại N
=> CN vuông góc với BM (2)
Từ (1) và (2) suy ra:
BM vuông góc với MK (đpcm)