Cho R là nhóm cộng các số thực và R* là nhóm nhân các số thực dương. Xét xem ánh xạ f: R ® R* được xác định bởi f(x) = 5x có phải là một đồng cấu từ nhóm cộng các số thực vào nhóm nhân các số thực dương không?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)...\left(\frac{1}{2021}-1\right)=-\frac{1}{2}.\left(-\frac{2}{3}\right)....\left(-\frac{2020}{2021}\right)\)
\(=\frac{1.2.3...2020}{2.3.4...2021}=\frac{1}{2021}\)
Ta có
(1−1/2)×(1−1/3)×(1−1/4).....×(1−1/2020)×(1−1/2021)(1-1/2)×(1-1/3)×(1-1/4).....×(1-1/2020)×(1-1/2021)
=1/2×2/3×3/4.....×2019/2020×2020/2021=1/2×2/3×3/4.....×2019/2020×2020/2021
=1×2×3×.....×2019×2020/2×3×4×....×2020×2021=1×2×3×.....×2019×2020/2×3×4×....×2020×2021
=1/2021
\(N=\frac{1}{13}+\frac{3}{13.23}+\frac{3}{23.33}+...+\frac{3}{1993.2003}\)
\(=\frac{3}{3.13}+\frac{3}{13.23}+\frac{3}{23.33}+...+\frac{3}{1993.2003}\)
\(=\frac{3}{10}\left(\frac{10}{3.13}+\frac{10}{13.23}+\frac{10}{23.33}+..+\frac{10}{1993.2003}\right)\)
\(=\frac{3}{10}\left(\frac{1}{3}-\frac{1}{13}+\frac{1}{13}-\frac{1}{23}+\frac{1}{23}-\frac{1}{33}+...+\frac{1}{1993}-\frac{1}{2003}\right)\)
\(=\frac{3}{10}\left(\frac{1}{3}-\frac{1}{2003}\right)=\frac{3}{10}.\frac{2000}{6009}=\frac{200}{2003}\)
\(N=\)\(\frac{1}{13}\)\(+\)\(\frac{3}{13.23}\)\(+\)\(\frac{3}{23.33}\)\(+...+\)\(\frac{3}{1993.2003}\)
\(N=\)\(\frac{1}{13}\)\(+\)\(\left(\frac{3}{13.23}+\frac{3}{23.33}+...+\frac{3}{1993.2003}\right)\)
\(N=\)\(\frac{1}{13}\)\(+\)\(\left[\frac{3}{10}\left(\frac{1}{13.23}+\frac{1}{23.33}+...+\frac{1}{1993.2003}\right)\right]\)
\(N=\)\(\frac{1}{13}\)\(+\)\(\left[\frac{3}{10}\left(\frac{1}{13}-\frac{1}{23}+\frac{1}{23}-\frac{1}{33}+...+\frac{1}{1993}-\frac{1}{2003}\right)\right]\)
\(N=\)\(\frac{1}{13}\)\(+\)\(\left[\frac{3}{10}\left(\frac{1}{13}-\frac{1}{2003}\right)\right]\)
\(N=\)\(\frac{1}{13}\)\(+\)\(\left[\frac{3}{10}.\frac{1990}{26039}\right]\)
\(N=\)\(\frac{1}{13}\)\(+\)\(\frac{597}{26039}\)
\(N=\)\(\frac{200}{2003}\)
Trả lời:
Làm tròn các số sau đến hàng chục, trăm, nghìn, chục nghìn:
a) 763189\(\approx\)763190
b) 198575\(\approx\)198600
c) 2398761\(\approx\)2399000
d) 1895678\(\approx\)1900000
HT
ối dồi ôi bạn ơi, toán lớp 1 chứ không phải lớp 7, tôi xốk quá
4)
Ta có x/3=y/2 và x/4=z/5
=>x/12=y/8=z/15
Theo tình chất các tỉ số bằng nhau ta có
X/12=y/8=z/15=x+y-z/12+8-15=10/5=2
=>x=2.12=24
y=8.2=16
z=15.2=30
Kết luận:.......
a. ta có :
\(\hept{\begin{cases}\left|x-1\right|+\left|x-4\right|\ge\left|x-1-x+4\right|=3\\\left|x-2\right|+\left|x-3\right|\ge\left|x-2-x+3\right|=1\\\left|2x-5\right|\ge0\end{cases}}\)
Vậy phương trình ban đầu có nghiệm \(\Rightarrow2x-5=0\Leftrightarrow x=\frac{5}{2}\)thay lại thấy thỏa mãn . Vậy x=5/2 là nghiệm
b.ta có
\(\hept{\begin{cases}\left|x+1\right|+\left|x-1\right|\ge\left|x+1-x+1\right|=2\\\left|x+2\right|+\left|x-5\right|\ge\left|x+2-x+5\right|=7\\\left|3x+2\right|\ge0\end{cases}}\)
Vậy phương trình ban đầu có nghiệm \(\Rightarrow3x+2=0\Leftrightarrow x=-\frac{2}{3}\)thay lại thấy thỏa mãn . Vậy x=-2/3 là nghiệm
Ta có \(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\)
=> \(1+\frac{a+b+c+d}{a}=1+\frac{a+b+c+d}{b}=1+\frac{a+b+c+d}{c}=1+\frac{a+b+c+d}{d}\)
=> \(\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
Khi a + b + c + d => a + b = -(c + d) ;
b + c = -(a + d) ;
c + d = -(a + b)
d + a = -(b + c)
Khi đó \(M=\frac{-\left(c+d\right)}{c+d}+\frac{-\left(a+d\right)}{a+d}+\frac{-\left(a+b\right)}{a+b}+\frac{-\left(b+c\right)}{b+c}\)
= (-1) + (-1) + (-1) + (-1) = -4
Khi a + b + c + d \(\ne0\)
=> \(\frac{1}{a}=\frac{1}{b}=\frac{1}{c}=\frac{1}{d}\Rightarrow a=b=c=d\)
Khi đó M = \(\frac{2a}{2a}+\frac{2b}{2b}+\frac{2c}{2c}+\frac{2d}{2d}=2+2+2+2=8\)
Vậy khi a + b + c + d = 0 thì M = -4
khi a + b + c + d \(\ne\)0 thì M = 8
TH1: \(x\le-1\)
ta có phương trình \(\left|x+1\right|+\left|2x-5\right|+\left|x-9\right|=10\Leftrightarrow-x-1-2x+5-x+9=10\)
\(\Leftrightarrow-4x=-3\Leftrightarrow x=\frac{3}{4}\left(\text{loại}\right)\)
TH2: \(-1< x\le\frac{5}{2}\) thì
\(\left|x+1\right|+\left|2x-5\right|+\left|x-9\right|=10\Leftrightarrow x+1-2x+5-x+9=10\)
\(\Leftrightarrow2x=5\Leftrightarrow x=\frac{5}{2}\left(tm\right)\)
Th3: \(\frac{5}{2}< x\le9\) thì
\(\left|x+1\right|+\left|2x-5\right|+\left|x-9\right|=10\Leftrightarrow x+1+2x-5-x+9=10\)
\(\Leftrightarrow2x=5\Leftrightarrow x=\frac{5}{2}\left(\text{loại}\right)\)
th4:\(x>9\)thì
\(\left|x+1\right|+\left|2x-5\right|+\left|x-9\right|=10\Leftrightarrow x+1+2x-5+x-9=10\)
\(\Leftrightarrow4x=23\Leftrightarrow x=\frac{23}{4}\left(\text{loại}\right)\)
Vậy x=5/2
bằng còn cái nịt