Cho nửa đtron đường kính AB. C,D c động trên cung tròn .góc COD=90°. Tiếp tuyến tại C,D cắt AB tại F,G. E là giao điểm của FC,GD
a,tính chu vi tam giác ECD
b,khi tứ giác FCDG là hình thang cân . Tính tỉ số AB:FG
c, DC.DG không đổi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(PT\Leftrightarrow\frac{2\sqrt{2x}}{\sqrt{1+x^2}}=1-x\)
\(\Leftrightarrow\frac{8x}{1+x^2}=1-2x+x^2\)
\(\Leftrightarrow8x=1+x^2-2x-2x^3+x^2+x^4\)
\(\Leftrightarrow x^4-2x^3+2x^2-10x+1=0\)
.......................
\(a+\sqrt{1-a^2}=b+\sqrt{1-b^2}\)
\(\Rightarrow a\sqrt{1-a^2}=b\sqrt{1-b^2}\)( bình phương 2 vế rồi rút gọn )
\(\Rightarrow a^2\left(1-a^2\right)=b\left(1-b^2\right)\)
\(\Rightarrow a^4-b^4-\left(a^2-b^2\right)=0\)
\(\Rightarrow\left(a^2-b^2\right)\left(a^2+b^2\right)-\left(a^2-b^2\right)=0\)
\(\Rightarrow\left(a^2-b^2\right)\left(a^2+b^2-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}a^2+b^2=1\\a=b\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}a^2+b^2=1\\a^2+b^2=2a^2=2b^2\end{cases}}\)
Đến đây có 2 trường hợp xảy ra , hình như bạn ghi thiếu gì đó
Theo công hệ thức lương trong tam giác vuông ta có :
\(AB^2=BH.BC\Leftrightarrow9=1,8.BC\Rightarrow BC=5\left(cm\right)\)
Định lý Pytago :
\(AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)
Như vậy khi ta quay tam giác ABC quanh trục AB ta thu được hình nón có đường cao \(AB=3\) , bán kính đáy \(AC=4\) và đường sinh \(BC=5\)
Diện tích xung quanh của hình nón thu được :
\(S_{xq}=\pi rl=\pi.AC.BC=20\pi\left(cm^2\right)\)
Thể tích hình nón là :
\(V=\frac{1}{3}\pi r^2h=\frac{1}{3}.\pi.4^2.3=16\pi\) ( cm khối )
a). Gọi giao điểm của OM với (O) là K.
Xét (O), tiếp tuyến MA, MB có MA cắt MB tại M
Suy ra: OM là phân giác của góc
Xét tam giác AOB cân tại O (OA = OB = R) có OM là phân giác của góc
⇒ OM ⊥ AB tại H
Vì OIBM là tứ giác nội tiếp (chứng minh trên)
Xét (O): = số đo cung BK (góc ở tâm chắn cung BK)
= 1212 . số đo cung AB
Số đo cung BK = 1212 . số đo cung AB
Mà 2 góc này ở vị trí đồng vị
Suy ra: EA//CD
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
A B C D E
Kẻ tia Cx sao cho \(\widehat{ABD}=\widehat{ACx}\) . Tia Cx cắt BD tại E
+ \(\Delta ABD~\Delta ECD\left(g.g\right)\)
\(\Rightarrow\hept{\begin{cases}\frac{AD}{BD}=\frac{ED}{CD}\\\widehat{BAD}=\widehat{CEB}\end{cases}}\)
\(\Rightarrow AD.CD=BD.ED\left(1\right)\)
+ \(\Delta ABD~\Delta EBC\left(g.g\right)\)
\(\Rightarrow\frac{AB}{BD}=\frac{EB}{BC}\Rightarrow AB.BC=EB.BD\left(2\right)\)
Từ (1) và (2) suy ra
\(AB.BC-AD.DC=BD.EB-BD.ED=BD^2\)