b1 chứng minh số sau không là số chính phương 42024+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
\(\widehat{DAB}\) chung
Do đó: ΔADB~ΔAEC
=>\(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)
=>\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
=>\(AD\cdot AC=AB\cdot AE\)
b: Xét ΔADE và ΔABC có
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
\(\widehat{DAE}\) chung
Do đó: ΔADE~ΔABC
c: Ta có: ΔADE~ΔABC
=>\(\widehat{AED}=\widehat{ACB}\)
mà \(\widehat{AED}=\widehat{IEB}\)(hai góc đối đỉnh)
nên \(\widehat{IEB}=\widehat{ICD}\)
Xét ΔIEB và ΔICD có
\(\widehat{IEB}=\widehat{ICD}\)
\(\widehat{I}\) chung
Do đó: ΔIEB~ΔICD
=>\(\dfrac{IE}{IC}=\dfrac{IB}{ID}\)
=>\(IE\cdot ID=IB\cdot IC\)
a: Số học sinh khá là \(45\cdot40\%=18\left(bạn\right)\)
Số học sinh còn lại là 45-18=27(bạn)
Số học sinh trung bình là \(27\left(1-\dfrac{5}{9}\right)=27\cdot\dfrac{4}{9}=12\left(bạn\right)\)
b: Số học sinh nữ là \(12:\dfrac{5}{6}=12\cdot\dfrac{6}{5}=\dfrac{72}{5}=14,4\left(bạn\right)\)
=>Đề sai rồi bạn
Gọi hai số cần tìm là a,b
Tổng của hai số là 32 nên a+b=32
Hai số tỉ lệ với 7/2 và 9/2 nên \(\dfrac{a}{\dfrac{7}{2}}=\dfrac{b}{\dfrac{9}{2}}\)
=>\(\dfrac{a}{3,5}=\dfrac{b}{4,5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{3,5}=\dfrac{b}{4,5}=\dfrac{a+b}{3,5+4,5}=\dfrac{32}{8}=4\)
=>\(a=4\cdot3,5=14;b=4\cdot4,5=18\)
Vậy: Hai số cần tìm là 14 và 18
a: Xét ΔMAB và ΔMCD có
MA=MC
\(\widehat{AMB}=\widehat{CMD}\)(hai góc đối đỉnh)
MB=MD
Do đó; ΔMAB=ΔMCD
=>AB=CD
mà AB=AC
nên CD=CA
=>ΔCDA cân tại C
b: Ta có: CD=CA
mà CA=CE
nên CD=CA=CE
=>\(CD=\dfrac{1}{2}AE\)
Xét ΔDAE có
DC là đường trung tuyến
\(DC=\dfrac{1}{2}AE\)
Do đó: ΔDAE vuông tại D
Lời giải:
Đặt $A=x^2+x^4+....+x^{100}$
$\Rightarrow x^2A=x^4+x^6+....+x^{100}+x^{102}$
$\Rightarrow x^2A-A=x^{102}-x^2$
$\Rightarrow A(x^2-1)=x^2(x^{100}-1)$
$\Rightarrow A=\frac{x^2(x^{100}-1)}{x^2-1}$
$\Rightarrow A.\frac{x^2-1}{x^{100}-1}=\frac{x^2(x^{100}-1)}{x^2-1}.\frac{x^2-1}{x^{100}-1}=x^2$ (đpcm)
Lời giải:
$4\equiv 1\pmod 3$
$\Rightarrow 4^{2024}+1\equiv 1^{2024}+1\equiv 2\pmod 3$
Một scp khi chia cho 3 thì chỉ có thể có số dư là $0$ hoặc $1$
$\Rightarrow 4^{2024}+1$ không phải số chính phương.